期刊文献+
共找到2,281篇文章
< 1 2 115 >
每页显示 20 50 100
Research on the Icing Diagnosis ofWind Turbine Blades Based on FS–XGBoost–EWMA
1
作者 Jicai Guo Xiaowen Song +5 位作者 Chang Liu Yanfeng Zhang Shijie Guo JianxinWu Chang Cai Qing’an Li 《Energy Engineering》 EI 2024年第7期1739-1758,共20页
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re... In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines. 展开更多
关键词 wind turbine blade icing feature selection XGBoost EWMA
下载PDF
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
2
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
Optimized Design of Bio-Inspired Wind Turbine Blades
3
作者 Yuanjun Dai Dong Wang +1 位作者 Xiongfei Liu Weimin Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1647-1664,共18页
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti... To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance. 展开更多
关键词 AIRFOIL wind turbines blade design CFD
下载PDF
Influence of Surface Ice Roughness on the Aerodynamic Performance of Wind Turbines
4
作者 Xin Guan Mingyang Li +2 位作者 Shiwei Wu Yuqi Xie Yongpeng Sun 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2029-2043,共15页
The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(fr... The focus of this research was on the equivalent particle roughness height correction required to account for the presence of ice when determining the performances of wind turbines.In particular,two icing processes(frost ice and clear ice)were examined by combining the FENSAP-ICE and FLUENT analysis tools.The ice type on the blade surfaces was predicted by using a multi-time step method.Accordingly,the influence of variations in icing shape and ice surface roughness on the aerodynamic performance of blades during frost ice formation or clear ice formation was investigated.The results indicate that differences in blade surface roughness and heat flux lead to disparities in both ice formation rate and shape between frost ice and clear ice.Clear ice has a greater impact on aerodynamics compared to frost ice,while frost ice is significantly influenced by the roughness of its icy surface. 展开更多
关键词 wind turbine icing blade surface roughness aerodynamic characteristics AIRFOIL
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
5
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
Nonlinear Flap-Wise Vibration Characteristics ofWind Turbine Blades Based onMulti-Scale AnalysisMethod
6
作者 Qifa Lang Yuqiao Zheng +2 位作者 Tiancai Cui Chenglong Shi Heyu Zhang 《Energy Engineering》 EI 2024年第2期483-498,共16页
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR... This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams. 展开更多
关键词 wind turbine blades nonlinear vibration Galerkin method multi-scales method
下载PDF
Flashover Probability of Wind Turbine Blade and Impact of Strong Electromagnetic Pulse from Lightning Strikes on Wind Turbine Safety
7
作者 Lixin YAO Bin XIAO +5 位作者 Jianwen ZHANG Weixiang FENG Renhong GUO Zengru YANG Chunliang ZHANG Hui YANG 《Meteorological and Environmental Research》 2024年第1期62-66,共5页
This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.... This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians. 展开更多
关键词 wind turbine Flashover probability of blade lightning arrester Spatial gradient of electromagnetic field intensity Technical route
下载PDF
Wind Turbine Noise Reduction through Blade Retrofitting
8
作者 Sarah Seevers Robin Ward +4 位作者 Scotty Hutto Darryl House Nick Zelenka Manuel Perea Daniel Fonseca 《Open Journal of Modelling and Simulation》 2024年第3期75-88,共14页
This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two c... This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations. 展开更多
关键词 wind turbine Noise blade Retrofitting Aerodynamic Noise Electricity Generation
下载PDF
Analysis of the Influence of the Blade Deformation on Wind Turbine Output Power in the Framework of a Bidirectional Fluid-Structure Interaction Model
9
作者 Ling Yuan Zhenggang Liu +1 位作者 Li Li Ming Lin 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1129-1141,共13页
The blades of large-scale wind turbines can obviously deform during operation,and such a deformation can affect the wind turbine’s output power to a certain extent.In order to shed some light on this phenomenon,for w... The blades of large-scale wind turbines can obviously deform during operation,and such a deformation can affect the wind turbine’s output power to a certain extent.In order to shed some light on this phenomenon,for which limited information is available in the literature,a bidirectional fluid-structure interaction(FSI)numerical model is employed in this work.In particular,a 5 MW large-scale wind turbine designed by the National Renewable Energy Laboratory(NREL)of the United States is considered as a testbed.The research results show that blades’deformation can increase the wind turbine’s output power by 135 kW at rated working conditions.Compared with the outcomes of the simulations conducted using the model with no blade deformation,the results obtained with the FSI model are closer to the experimental data.It is concluded that the bidirectional FSI model can replicate the working conditions of wind turbines with great fidelity,thereby providing an effective method for wind turbine design and optimization. 展开更多
关键词 wind turbine fluid-structure interaction numerical simulation blade
下载PDF
Simulation of Offshore Wind Turbine Blade Docking Based on the Stewart Platform
10
作者 Yi Zhang Jiamin Guo Huanghua Peng 《Energy Engineering》 EI 2023年第11期2489-2502,共14页
The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high... The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high wind speed conditions,the Stewart platform is used as an auxiliary tool to help dock the wind turbine blade in this paper.In order to verify the effectiveness of the Stewart platform for blade docking,a blade docking simulation system consisting of the Stewart platform,wind turbine blade,and wind load calculation module was built based on Simulink/SimscapeMultibody.At the same time,the PID algorithm is used to control the Stewart platform so that the blade can effectively track the desired trajectory during the docking process to ensure the successful docking of the blade.Through the simulation of the docking process for blades with a length of 61.5 meters,this paper successfully demonstrates a docking system that might facilitate future docking processes.It also shows that the Stewart platform can effectively reduce the vibration and the movement range of the blade root and improve the stability and efficiency of blade docking. 展开更多
关键词 offshore wind turbine Stewart platform blade docking PID simscape multibody
下载PDF
Research on the Follow-Up Control Strategy of Biaxial Fatigue Test of Wind Turbine Blade Based on Electromagnetic Excitation
11
作者 Wenzhe Guo Leian Zhang +2 位作者 Chao Lv Weisheng Liu Jiabin Tian 《Energy Engineering》 EI 2023年第10期2307-2323,共17页
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue... Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm. 展开更多
关键词 wind turbine blades biaxial fatigue loading tracking control fuzzy FTRLS
下载PDF
Stiffness Degradation Modeling for Composite Wind Turbine Blades Based on Full-Scale Fatigue Testing
12
作者 Haixia Kou Kongyuan Wei +1 位作者 Yanhu Liu Xuyao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期517-528,共12页
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin... In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading. 展开更多
关键词 composite wind turbine blades fatigue damage stiffness degradation model full-scale fatigue testing
下载PDF
Damage Identification of Wind Turbine Blades–A Brief Review
13
作者 Amna Algolfat Weizhuo Wang Alhussein Albarbar 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期198-206,共9页
The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlig... The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlights various techniques,including acoustic emission analysis,strain signal monitoring,and vibration analysis,as effective approaches for damage detection.Vibration analysis,in particular,shows promise for fault identification by analyzing changes in dynamic characteristics.Damage indices based on modal properties,such as natural frequencies,mode shapes,and curvature,are discussed. 展开更多
关键词 damage modeling digital twin vibration-based indices wind turbine blade
下载PDF
Hashin Failure Theory Based Damage Assessment Methodology of Composite Tidal Turbine Blades and Implications for the Blade Design 被引量:3
14
作者 YU Guo-qing REN Yi-ru +2 位作者 ZHANG Tian-tian XIAO Wan-shen JIANG Hong-yong 《China Ocean Engineering》 SCIE EI CSCD 2018年第2期216-225,共10页
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix... A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically. 展开更多
关键词 composites tidal current turbine blade damage assessment tidal energy Hashin failure theory blade design
下载PDF
Dynamic Characteristics Analysis of the Offshore Wind Turbine Blades 被引量:2
15
作者 李静 陈健云 陈小波 《Journal of Marine Science and Application》 2011年第1期82-87,共6页
The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine t... The topic of offshore wind energy is attracting more and more attention as the energy crisis heightens.The blades are the key components of offshore wind turbines,and their dynamic characteristics directly determine the effectiveness of offshore wind turbines.With different rotating speeds and blade length,the rotating blades generate various centrifugal stiffening effects.To directly analyze the centrifugal stiffening effect of blades,the Rayleigh energy method (REM) was used to derive the natural frequency equation of the blade,including the centrifugal stiffening effect and the axial force calculation formula.The axial force planes and the first to third order natural frequency planes which vary with the rotating speed and length were calculated in three-dimensional coordinates.The centrifugal stiffening coefficient was introduced to quantitatively study the relationship between the centrifugal stiffening degree and the rotating speed,and then the fundamental frequency correction formula was built based on the rotating speed and the blade length.The analysis results show that the calculation results of the fundamental frequency correction formula agree with the theoretical calculation results.The error of calculation results between them is less than 0.5%. 展开更多
关键词 centrifugal stiffening effect blade dynamic characteristic stiffening coefficient natural frequency offshore wind turbine
下载PDF
Experimental study of the effect of slotted blades on the Savonius wind turbine performance 被引量:1
16
作者 Dominicus Danardono Dwi Prija Tjahjana Zainal Arifin +3 位作者 Suyitno Suyitno Wibawa Endra Juwana Aditya Rio Prabowo Catur Harsito 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第3期162-171,共10页
This study investigates the effect of Reynolds number on the performance of Savonius wind turbine with slotted blades.The turbine performance investigation was based on the torque coefficient(Ct),power coefficient(Cp)... This study investigates the effect of Reynolds number on the performance of Savonius wind turbine with slotted blades.The turbine performance investigation was based on the torque coefficient(Ct),power coefficient(Cp),and tip speed ratio(TSR).The experiment used two number of blade configuration,blade overlap ratio of 10%,12.5%and 20%,slotted position of 15%,20%,25%and 35%,and also slotted gap width of 3 mm,5 mm,7 mm,and 9 mm.The wind speed carried out in this experiment are 5.94 m/s,6.46 m/s,6.99 m/s,and 7.27 m/s,which are generated from the fan blowers as a wind source.The Savonius turbine with 10%overlap ratio shows the best performance.The highest Cp obtained is 0.138 by the variation of a 3 mm gap with Re of 1.44×10^(4) and 0.526 TSR. 展开更多
关键词 Reynolds number Slotted blades Savonius wind turbine
下载PDF
Diagnosis Technology for the Icing Status of Wind Turbine Blades Based on Vibration Detection 被引量:2
17
作者 LIU Shengxian LI Luping Yu Tao LEI Libin LI Mangmang 《中国电机工程学报》 EI CSCD 北大核心 2013年第32期I0013-I0013,1,共1页
对不同覆冰状态下的风力机叶片动力特性进行了模拟实验研究,定义叶片覆冰状态参数,包括覆冰区域起点参数、覆冰区域长度参数和覆冰厚度参数。利用人工环境实验室和模态分析系统建立风力机叶片覆冰振动测试实验台,对风力机模拟叶片在... 对不同覆冰状态下的风力机叶片动力特性进行了模拟实验研究,定义叶片覆冰状态参数,包括覆冰区域起点参数、覆冰区域长度参数和覆冰厚度参数。利用人工环境实验室和模态分析系统建立风力机叶片覆冰振动测试实验台,对风力机模拟叶片在不同覆冰状态下进行模态分析,从叶片的曲率模态参数中提取判断风力机叶片覆冰参数的特征值指标,从实验结果获得的特征值较准确地诊断出风力机模拟叶片覆冰状态。通过仿真计算得到叶片结构的质量变化率和抗弯刚度变化率重合点。上述仿真及实验结果表明风力机叶片覆冰诊断理论方法以及技术具备正确性与可行性。 展开更多
关键词 振动检测 诊断技术 结冰 风力机 状态 片基 风力发电机 风力涡轮机
下载PDF
Towing characteristics of large-scale composite bucket foundation for offshore wind turbines 被引量:22
18
作者 张浦阳 丁红岩 +1 位作者 乐丛欢 黄旭 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期300-304,共5页
In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.Th... In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation. 展开更多
关键词 large-scale composite bucket foundation TOWING MOSES offshore wind turbines
下载PDF
The Design of Stall-Regulated Wind Turbine Blade for a Maximum Annual Energy Output and Minimum Cost of Energy Based on a Specific Wind Statistic
19
作者 W. Sridech T. Chitsomboon 《Journal of Power and Energy Engineering》 2014年第6期10-21,共12页
The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard sta... The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard statistical distribution such as a Weibull with k = 2.0. In this study a more elaborated design will be attempted by also considering the statistical bias as a design criterion. The wind data used in this study were collected from three areas of the Lamtakong weather station in Nakhonratchasima Provice, the Khaokoh weather station in Phetchaboon and the Sirindhorn dam weather station in Ubonratchathani, Thailand. The objective is to design a best aerodynamic configurations for the blade (chord, twist and pitch) using the same airfoil as that of NREL Phase VI wind turbine. Such design is carried out at a design wind speed point. Wind turbine blades were optimized for both maximum annual energy production and minimum cost of energy using a method that take into account aerodynamic and structural considerations. The work will be carried out by the program “SuWiTStat” which was developed by the authors and based on BEM Theory (Blade Element Momentum). Another side issue is the credibility of the Weibull statistic in representing the real wind measurement. This study uses a regression analysis to determine this issue. 展开更多
关键词 Component wind turbine blade DESIGN ANNUAL Power Yield Local wind Statistic Cost of ENERGY
下载PDF
Computational Investigation of the Causes of Wind Turbine Blade Damage at Japan’s Wind Farm in Complex Terrain
20
作者 Takanori Uchida 《Journal of Flow Control, Measurement & Visualization》 2018年第3期152-167,共16页
During the passage of Typhoon 0918 (Melor) over southern Honshu in Japan on 7 and 8 October 2009, strong winds with extremely high turbulence fluctuations were observed over Shirataki Mountain and the surrounding moun... During the passage of Typhoon 0918 (Melor) over southern Honshu in Japan on 7 and 8 October 2009, strong winds with extremely high turbulence fluctuations were observed over Shirataki Mountain and the surrounding mountains in Shimonoseki, Yamaguchi Prefecture, Japan. These strong winds caused damage to wind turbine blades at the Shiratakiyama Wind Farm owned by Kinden Corporation. In order to investigate the causes of the blade damage, the airflow characteristics from the time of the incidences are first simulated in detail with the combined use of the WRF-ARW mesoscale meteorological model and the RIAM-COMPACT LES turbulence model (CFD model). Subsequently, in order to evaluate the wind pressure acting on the wind turbine blades, an airflow analysis is separately performed for the vicinity of the blades with the RANS turbulence model. Finally, the stress on the blades is investigated using the FEM with the RANS analysis results as the boundary conditions. 展开更多
关键词 wind turbine blade DAMAGE Complex TERRAIN METEOROLOGICAL MODEL CFD MODEL
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部