This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of th...This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.展开更多
This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn i...This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.展开更多
For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are...For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.展开更多
The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the follo...The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.展开更多
It is well known that the full compressible Navier-Stokes equations with viscosity and heat conductivity coefficients of order of the Knudsen number ò>0 can be deduced from the Boltzmann equation via the Chapm...It is well known that the full compressible Navier-Stokes equations with viscosity and heat conductivity coefficients of order of the Knudsen number ò>0 can be deduced from the Boltzmann equation via the Chapman-Enskog expansion. In this paper, we carry out the rigorous mathematical study of the compressible Navier-Stokes equation with the initial-boundary value problems. We construct the existence and most importantly obtain the higher regularities of the solutions of the full compressible Navier-Stokes system with weak viscosity and heat conductivity in a general bounded domain.展开更多
The viscous dissipation limit of weak solutions is considered for the Navier-Stokes equations of compressible isentropic flows confined in a bounded domain.We establish a Kato-type criterion for the validity of the in...The viscous dissipation limit of weak solutions is considered for the Navier-Stokes equations of compressible isentropic flows confined in a bounded domain.We establish a Kato-type criterion for the validity of the inviscid limit for the weak solutions of the Navier-Stokes equations in a function space with the regularity index close to Onsager’s critical threshold.In particular,we prove that under such a regularity assumption,if the viscous energy dissipation rate vanishes in a boundary layer of thickness in the order of the viscosity,then the weak solutions of the Navier-Stokes equations converge to a weak admissible solution of the Euler equations.Our approach is based on the commutator estimates and a subtle foliation technique near the boundary of the domain.展开更多
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the d...In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.展开更多
We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for shor...We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for short) classical incompressible Navier-Stokes equations and using techniques developed in(SIAM J Math Anal, 2020, 52(2): 1806–1843), we derive the global existence of solutions provided that the initial data satisfies some smallness condition. In particular, the initial velocity with some arbitrary Besov norm of potential part Pu_0 and large high oscillation are allowed in our results. Moreover, we also construct an example with the initial data involving such a smallness condition, but with a norm that is arbitrarily large.展开更多
Due to the high degeneracy and singularity of the entropy equation,the physical entropy for viscous and heat-conductive polytropic gases behaves singularly in the presence of vacuum,and it is thus a challenge to study...Due to the high degeneracy and singularity of the entropy equation,the physical entropy for viscous and heat-conductive polytropic gases behaves singularly in the presence of vacuum,and it is thus a challenge to study its dynamics.It is shown in this paper that the uniform boundedness of the entropy and the inhomogeneous Sobolev regularities of the velocity and temperature can be propagated for viscous and heat-conductive gases in R3,provided that the initial vacuum occurs only at far fields with suitably slow decay of the initial density.Precisely,it is proved that for any strong solution to the Cauchy problem of the heat-conductive compressible Navier-Stokes equations,the corresponding entropy remains uniformly bounded,and the L2 regularities of the velocity and temperature can be propagated,up to the existing time of the solution,as long as the initial density vanishes only at far fields with a rate not faster than O(1/|x|^(2)).The main tools are some singularly weighted energy estimates and an elaborate De Giorgi-type iteration technique.We apply the De Giorgi-type iterations to different equations in establishing the lower and upper bounds of the entropy.展开更多
We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error syste...We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.展开更多
In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressu...In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.展开更多
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy...This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.展开更多
In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function ...In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.展开更多
We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat...We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.展开更多
The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA00...The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.展开更多
In this paper, we obtain a blow-up criterion for classical solutions to the 3-D compressible Navier-Stokes equations just in terms of the gradient of the velocity, analogous to the Beal-Kato-Majda criterion for the id...In this paper, we obtain a blow-up criterion for classical solutions to the 3-D compressible Navier-Stokes equations just in terms of the gradient of the velocity, analogous to the Beal-Kato-Majda criterion for the ideal incompressible flow. In addition, the initial vacuum is allowed in our case.展开更多
This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational fo...This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.展开更多
In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in s...In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.展开更多
A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is establishe...A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.展开更多
基金supported by the Program for New Century Excellent Talents in University of the Ministry of Education(NCET-13-0804)NSFC(11471127)+3 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306029)The Excellent Young Teachers Program of Guangdong Province(HS2015007)Pearl River S&T Nova Program of Guangzhou(2013J2200064)supported by the General Research Fund of Hong Kong,City U 104511
文摘This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.
基金supported in part by the NSF of China (10571024,10871040)the grant of Prominent Youth of Henan Province of China (0412000100)
文摘This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.
基金Sponsored by National Natural Science Foundation of China (10431060, 10329101)
文摘For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.
基金supported by National Natural Science Foundation of China-NSAF(11271305,11531010)the Fundamental Research Funds for Xiamen University(201412G004)supported by National Natural Science Foundation of ChinaNSAF(11271305,11531010)
文摘The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.
文摘It is well known that the full compressible Navier-Stokes equations with viscosity and heat conductivity coefficients of order of the Knudsen number ò>0 can be deduced from the Boltzmann equation via the Chapman-Enskog expansion. In this paper, we carry out the rigorous mathematical study of the compressible Navier-Stokes equation with the initial-boundary value problems. We construct the existence and most importantly obtain the higher regularities of the solutions of the full compressible Navier-Stokes system with weak viscosity and heat conductivity in a general bounded domain.
基金supported by National Science Foundation of USA(Grant No.DMS-1907584)supported by the Fundamental Research Funds for the Central Universities(Grant No.JBK 2202045)+1 种基金supported by National Science Foundation of USA(Grant Nos.DMS-1907519 and DMS-2219384)supported by National Natural Science Foundation of China(Grant No.12271122)。
文摘The viscous dissipation limit of weak solutions is considered for the Navier-Stokes equations of compressible isentropic flows confined in a bounded domain.We establish a Kato-type criterion for the validity of the inviscid limit for the weak solutions of the Navier-Stokes equations in a function space with the regularity index close to Onsager’s critical threshold.In particular,we prove that under such a regularity assumption,if the viscous energy dissipation rate vanishes in a boundary layer of thickness in the order of the viscosity,then the weak solutions of the Navier-Stokes equations converge to a weak admissible solution of the Euler equations.Our approach is based on the commutator estimates and a subtle foliation technique near the boundary of the domain.
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
基金partially supported by the National Science Foundation of China(11971320,11971496)the National Key R&D Program of China(2020YFA0712500)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010530)。
文摘In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.
基金Zhai was partially supported by the Guangdong Provincial Natural Science Foundation (2022A1515011977)the Science and Technology Program of Shenzhen(20200806104726001)+1 种基金Zhong was partially supported by the NNSF of China (11901474, 12071359)the Exceptional Young Talents Project of Chongqing Talent (cstc2021ycjh-bgzxm0153)。
文摘We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for short) classical incompressible Navier-Stokes equations and using techniques developed in(SIAM J Math Anal, 2020, 52(2): 1806–1843), we derive the global existence of solutions provided that the initial data satisfies some smallness condition. In particular, the initial velocity with some arbitrary Besov norm of potential part Pu_0 and large high oscillation are allowed in our results. Moreover, we also construct an example with the initial data involving such a smallness condition, but with a norm that is arbitrarily large.
基金supported by National Natural Science Foundation of China(Grant No.12131010)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2020B1515310002)+2 种基金supported by National Natural Science Foundation of China(Grant Nos.11971009 and 11871005)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2019A1515011621 and 2020B1515310005)supported by the Zheng Ge Ru Foundation and the Hong Kong RGC Earmarked Research Grants(Grant Nos.CUHK-14305315,CUHK-14300917 and CUHK-14302819).
文摘Due to the high degeneracy and singularity of the entropy equation,the physical entropy for viscous and heat-conductive polytropic gases behaves singularly in the presence of vacuum,and it is thus a challenge to study its dynamics.It is shown in this paper that the uniform boundedness of the entropy and the inhomogeneous Sobolev regularities of the velocity and temperature can be propagated for viscous and heat-conductive gases in R3,provided that the initial vacuum occurs only at far fields with suitably slow decay of the initial density.Precisely,it is proved that for any strong solution to the Cauchy problem of the heat-conductive compressible Navier-Stokes equations,the corresponding entropy remains uniformly bounded,and the L2 regularities of the velocity and temperature can be propagated,up to the existing time of the solution,as long as the initial density vanishes only at far fields with a rate not faster than O(1/|x|^(2)).The main tools are some singularly weighted energy estimates and an elaborate De Giorgi-type iteration technique.We apply the De Giorgi-type iterations to different equations in establishing the lower and upper bounds of the entropy.
基金Yuxi HU was supported by the NNSFC (11701556)the Yue Qi Young Scholar ProjectChina University of Mining and Technology (Beijing)。
文摘We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.
基金partially supported by the National Natural Sciences Foundation of China(11931010,12061003)。
文摘In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.
基金supported by the National Natural Science Foundation of China(12361044)supported by the National Natural Science Foundation of China(12171024,11971217,11971020)supported by the Academic and Technical Leaders Training Plan of Jiangxi Province(20212BCJ23027)。
文摘This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.
基金supported by the NSFC(11931013)the GXNSF(2022GXNSFDA035078)。
文摘In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.
基金supported by the National Natural Science Foundation of China(11871218,12071298)in part by the Science and Technology Commission of Shanghai Municipality(21JC1402500,22DZ2229014)。
文摘We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
文摘The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.
基金supported in part by Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research Grants (Grant Nos. CUHK4028/04P, CUHK4040/06P, CUHK4042/08P)the RGC Central Allocation Grant (Grant No. CA05/06.SC01)
文摘In this paper, we obtain a blow-up criterion for classical solutions to the 3-D compressible Navier-Stokes equations just in terms of the gradient of the velocity, analogous to the Beal-Kato-Majda criterion for the ideal incompressible flow. In addition, the initial vacuum is allowed in our case.
基金Program for New Century ExcellentTalents in University(NCET-04-0745)the Key Project of the National Natural Science Foundation of China(10431060)
文摘This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.
文摘In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.
基金partially supported by NSFC (10825102)for distinguished youth scholarsupported by the CAS-TWAS postdoctoral fellowships (FR number:3240223274)AMSS in Chinese Academy of Sciences
文摘A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.