In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design envi...In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design environment is analyzed. Subsequently based on a module library and principle catalogue, a solution finding process as a part of conceptual design is proposed for a creative design. In addition, a search algorithm to find the solution of adaptable function structure is also discussed. The concepts proposed in this paper can support the subsequent design stages, especially simulation for checking the function structure defects.展开更多
This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural de...This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.展开更多
Considering the characteristics of highway bridges in Mountainous Areas, The design principles of bridge structure design, such as structure form, superstructure, span and substructure, are described, the optimal desi...Considering the characteristics of highway bridges in Mountainous Areas, The design principles of bridge structure design, such as structure form, superstructure, span and substructure, are described, the optimal design scheme of bridge structure is discussed from the aspects of safety, economy and so on in this paper.展开更多
The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strat...The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.展开更多
As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial f...As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.展开更多
This paper reviews the use of fiber-reinforced polymers (FRPs) in architectural and structural bridge design in the Netherlands. The challenges and opportunities of this relatively new material, both for the archite...This paper reviews the use of fiber-reinforced polymers (FRPs) in architectural and structural bridge design in the Netherlands. The challenges and opportunities of this relatively new material, both for the architect and the engineer, are discussed. An inventory of recent structural solutions in FRP is included, followed by a discussion on architectural FRP applications derived from the architectural practice of the author and of other pioneers.展开更多
Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the sim...Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.展开更多
This research is dedicated to assessment of a method that was earlier proposed and developed in order to increase the degree of automation and software involvement into conceptual decision making during design of stru...This research is dedicated to assessment of a method that was earlier proposed and developed in order to increase the degree of automation and software involvement into conceptual decision making during design of structural elements of buildings. Such instruments of the theory of inventive problem solving as contradiction and function analysis and trimming formed the basis of the proposed approach that was realized in a modern building information modeling software. The common logic of the approach is also provided in the article. Qualitative research methods and particularly collecting, analyzing and interpreting data were applied in this research. Firstly, a literature review of indexed journal articles in the field of the study was performed and some trends for possible development of the topic were identified. Secondly, a survey of potential users of the methodology was conducted and analyzed. The questionnaire results showed that the suggested method and its technical realization gained attraction among respondents, however, some of them are rather cautious regarding application of the approach potentials in their practice. The paper ends with evaluation results discussion, conclusion and proposals for further research.展开更多
Based on the definition of a logic structure feature to relate logically functional requirements to geometric representation independent upon detailed geometric representation, this paper presents an idea of logical s...Based on the definition of a logic structure feature to relate logically functional requirements to geometric representation independent upon detailed geometric representation, this paper presents an idea of logical structure modeling for computer aided conceptual design and makes attempt to establish a representation formalism of logic structure modeling. The definition and representation of logical structure feature are given and an assembly module definition for supporting top down conceptual design is also proposed. The proposed scheme contributes to several aspects of conceptual design research, especially to provide elementarily a formal methodology for computer aided conceptual design system development and operation.展开更多
The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Cons...The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Construction'(MCEER Project 112),which was completed in 1998.MCEER coordinated the work of many researchers,who performed studies on the seismic design and vulnerability analysis of highway bridges,tunnels,and retaining structures. Extensive research was conducted to provide revisions and improvements to current design and detailing approaches and national design specifications for highway bridges.The program included both analytical and experimental studies,and addressed seismic hazard exposure and ground motion input for the U.S.highway system;foundation design and soil behavior: structural importance,analysis,and response:structural design issues and details;and structural design criteria.展开更多
Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acti...Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake.展开更多
Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also...Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.展开更多
Integral abutment bridges(IABs)minimize deterioration and degradation of the abutment seats and bearings due to water,dirt,and deicing chemicals by eliminating bearings and expansion joints.Although the continuity bet...Integral abutment bridges(IABs)minimize deterioration and degradation of the abutment seats and bearings due to water,dirt,and deicing chemicals by eliminating bearings and expansion joints.Although the continuity between superstructure and abutments in an IAB is beneficial for reducing maintenance costs,it leads to more complex behavior under strength and service loading(temperature and traffic)and extreme loading(earthquake).The coupling of superstructure and substructure behavior necessitates system-level analysis of IABs.Prior seismic IAB studies have typically investigated the behavior of individual IAB components,however a gap of knowledge has developed due to the lack of studies and investigation about the behavior of all IAB components and their interactions with each other in a single analysis model.This study uses nonlinear static and dynamic analyses to investigate and assess the seismic behavior of IABs typical to the state of Illinois.The analyses aim to bridge the gap of knowledge by evaluating IABs as a whole and utilizing the results to indicate potential vulnerabilities in the design and construction of IABs in Illinois during design-level and larger seismic events,which could not be identified by component-level IAB analyses alone.展开更多
Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is...Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.展开更多
The structural design of the IND100 axial compressor requires a multistage interrelationship between the thermodynamic, aerodynamic, mechanical design and structural integrity analysis of the component. These design c...The structural design of the IND100 axial compressor requires a multistage interrelationship between the thermodynamic, aerodynamic, mechanical design and structural integrity analysis of the component. These design criteria, sometimes act in opposition, hence engineering balance is employed within the specified design performance limits. This paper presents the structural and conceptual design of a sixteen stage single shaft high pressure compressor of IND100 with an overall pressure ratio of 12 and mass flow of 310 kg/s at ISOSLS conditions. Furthermore, in order to evaluate the conceptual design analysis, basic parameters like compressor sizing, load and blade mass, disc stress analysis, bearings and material selections, conceptual disc design and rotor dynamics are considered using existing tools and analytical technique. These techniques employed the basic thermodynamic and aerodynamic theory of axial flow compressors to determine the temperature and pressure for all stages, geometrical parameters, velocity triangle, and weight and stress calculations of the compressor disc using Sagerser Empirical Weight Estimation. The result analysis shows a constant hub diameter annulus configuration with compressor overall axial length of 3.75 m, tip blade speed of 301 m/s, maximum blade centrifugal force stress of 170 MPa, with major emphasis on industrial application for the structural component design selections.展开更多
The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined...The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.展开更多
In the city of Gdansk in Poland,in the very center of the Baltic capital,on 17th of June 2017,a new draw footbridge was ceremoniously opened to the public.The Olowianka footbridge represents the long-time much needed ...In the city of Gdansk in Poland,in the very center of the Baltic capital,on 17th of June 2017,a new draw footbridge was ceremoniously opened to the public.The Olowianka footbridge represents the long-time much needed link between the highly tourist-visited historical old town and Ołowianka Island,where further cultural,tourist and recreation facilities are located.The bridge spans a very busy navigable channel of the Motława River,leading inward towards other city channels,a harbor for many tourist ships and the Gdansk Marina.Being the main navigable entrance to the city center,the Motława is constantly under nautical traffic,so the Ołowianka footbridge operates 24/7,according to a 30-min schedule.The Ołowianka footbridge is an extraordinary acquisition for the city of Gdansk,which immediately became a new landmark and much more in the already very picturesque historic city center.Not just its design,but also its carefully chosen location and its realization at the right moment,has made this bridge indispensable to the inhabitants,visitors and the administration of the city of Gdansk,decisively contributing to further development in the Ołowianka Island area and its surroundings.展开更多
With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more s...With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.展开更多
Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is establish...Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.展开更多
文摘In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design environment is analyzed. Subsequently based on a module library and principle catalogue, a solution finding process as a part of conceptual design is proposed for a creative design. In addition, a search algorithm to find the solution of adaptable function structure is also discussed. The concepts proposed in this paper can support the subsequent design stages, especially simulation for checking the function structure defects.
文摘This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.
文摘Considering the characteristics of highway bridges in Mountainous Areas, The design principles of bridge structure design, such as structure form, superstructure, span and substructure, are described, the optimal design scheme of bridge structure is discussed from the aspects of safety, economy and so on in this paper.
文摘The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.
文摘As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.
文摘This paper reviews the use of fiber-reinforced polymers (FRPs) in architectural and structural bridge design in the Netherlands. The challenges and opportunities of this relatively new material, both for the architect and the engineer, are discussed. An inventory of recent structural solutions in FRP is included, followed by a discussion on architectural FRP applications derived from the architectural practice of the author and of other pioneers.
基金Supported by the National Basic Research Program of China(613570303)
文摘Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.
文摘This research is dedicated to assessment of a method that was earlier proposed and developed in order to increase the degree of automation and software involvement into conceptual decision making during design of structural elements of buildings. Such instruments of the theory of inventive problem solving as contradiction and function analysis and trimming formed the basis of the proposed approach that was realized in a modern building information modeling software. The common logic of the approach is also provided in the article. Qualitative research methods and particularly collecting, analyzing and interpreting data were applied in this research. Firstly, a literature review of indexed journal articles in the field of the study was performed and some trends for possible development of the topic were identified. Secondly, a survey of potential users of the methodology was conducted and analyzed. The questionnaire results showed that the suggested method and its technical realization gained attraction among respondents, however, some of them are rather cautious regarding application of the approach potentials in their practice. The paper ends with evaluation results discussion, conclusion and proposals for further research.
文摘Based on the definition of a logic structure feature to relate logically functional requirements to geometric representation independent upon detailed geometric representation, this paper presents an idea of logical structure modeling for computer aided conceptual design and makes attempt to establish a representation formalism of logic structure modeling. The definition and representation of logical structure feature are given and an assembly module definition for supporting top down conceptual design is also proposed. The proposed scheme contributes to several aspects of conceptual design research, especially to provide elementarily a formal methodology for computer aided conceptual design system development and operation.
基金the Federal Highway Administration under contract number DTFH61-92-C-00112.
文摘The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Construction'(MCEER Project 112),which was completed in 1998.MCEER coordinated the work of many researchers,who performed studies on the seismic design and vulnerability analysis of highway bridges,tunnels,and retaining structures. Extensive research was conducted to provide revisions and improvements to current design and detailing approaches and national design specifications for highway bridges.The program included both analytical and experimental studies,and addressed seismic hazard exposure and ground motion input for the U.S.highway system;foundation design and soil behavior: structural importance,analysis,and response:structural design issues and details;and structural design criteria.
文摘Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake.
文摘Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.
基金used the Extreme Science and Engineering Discovery Environment(XSEDE),which is supported by National Science Foundation(NSF)Grant No.ACI-1548562。
文摘Integral abutment bridges(IABs)minimize deterioration and degradation of the abutment seats and bearings due to water,dirt,and deicing chemicals by eliminating bearings and expansion joints.Although the continuity between superstructure and abutments in an IAB is beneficial for reducing maintenance costs,it leads to more complex behavior under strength and service loading(temperature and traffic)and extreme loading(earthquake).The coupling of superstructure and substructure behavior necessitates system-level analysis of IABs.Prior seismic IAB studies have typically investigated the behavior of individual IAB components,however a gap of knowledge has developed due to the lack of studies and investigation about the behavior of all IAB components and their interactions with each other in a single analysis model.This study uses nonlinear static and dynamic analyses to investigate and assess the seismic behavior of IABs typical to the state of Illinois.The analyses aim to bridge the gap of knowledge by evaluating IABs as a whole and utilizing the results to indicate potential vulnerabilities in the design and construction of IABs in Illinois during design-level and larger seismic events,which could not be identified by component-level IAB analyses alone.
文摘Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.
文摘The structural design of the IND100 axial compressor requires a multistage interrelationship between the thermodynamic, aerodynamic, mechanical design and structural integrity analysis of the component. These design criteria, sometimes act in opposition, hence engineering balance is employed within the specified design performance limits. This paper presents the structural and conceptual design of a sixteen stage single shaft high pressure compressor of IND100 with an overall pressure ratio of 12 and mass flow of 310 kg/s at ISOSLS conditions. Furthermore, in order to evaluate the conceptual design analysis, basic parameters like compressor sizing, load and blade mass, disc stress analysis, bearings and material selections, conceptual disc design and rotor dynamics are considered using existing tools and analytical technique. These techniques employed the basic thermodynamic and aerodynamic theory of axial flow compressors to determine the temperature and pressure for all stages, geometrical parameters, velocity triangle, and weight and stress calculations of the compressor disc using Sagerser Empirical Weight Estimation. The result analysis shows a constant hub diameter annulus configuration with compressor overall axial length of 3.75 m, tip blade speed of 301 m/s, maximum blade centrifugal force stress of 170 MPa, with major emphasis on industrial application for the structural component design selections.
基金Supported by the National Natural Science Foundation of China(No.50805101 and No.51275347)the National Key S&T Special Projects of China on CNC Machine Tools and Fundamental Manufacturing Equipment(No.2010ZX04001-191 and No.2011ZX04002-032)the Science and Technology R&D Program of Tianjin(No.13JCZDJC35000 and No.12ZCDZGX45000)
文摘The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.
文摘In the city of Gdansk in Poland,in the very center of the Baltic capital,on 17th of June 2017,a new draw footbridge was ceremoniously opened to the public.The Olowianka footbridge represents the long-time much needed link between the highly tourist-visited historical old town and Ołowianka Island,where further cultural,tourist and recreation facilities are located.The bridge spans a very busy navigable channel of the Motława River,leading inward towards other city channels,a harbor for many tourist ships and the Gdansk Marina.Being the main navigable entrance to the city center,the Motława is constantly under nautical traffic,so the Ołowianka footbridge operates 24/7,according to a 30-min schedule.The Ołowianka footbridge is an extraordinary acquisition for the city of Gdansk,which immediately became a new landmark and much more in the already very picturesque historic city center.Not just its design,but also its carefully chosen location and its realization at the right moment,has made this bridge indispensable to the inhabitants,visitors and the administration of the city of Gdansk,decisively contributing to further development in the Ołowianka Island area and its surroundings.
文摘With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA04Z416)the National Science Fund for Distinguished Young Scholars(No.50725828)
文摘Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.