[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exp...[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exposed to water under the dark conditions respectively in Septem- ber 2009 and September 2010. Then, they were taken away from the water, and grew in natural conditions in the following March and April respec- tively ( marked as S1, S2, S1 and S2). The plant number was conducted statistics respectively. On May 7, the leaf number was made statistics. Length, width and rapid light responding curve of the leaf were determined. [ Result] Repeated flooding restrained significantly plant germination un- der the dark condition. Plant number in S1 and S2 groups decreased by 38.9% and 33.3% respectively compared with the control. It also reduced survival rate of the plant. Plant number in S2 group decreased by 16.7% (P 〈 0.05) compared with that of S2 group when they were taken away from the water. Both of flooding promoted elongation of the leaves, restrained leaves to grow wider, and also restrained leaf formation of the plants except for S1 and S1 groups. Total leaf length of a plant decreased markedly after the second flooding which in S1 and S2 groups were 50.6% and 36.9% respectively less than that after the first flooding. Total leaf number of the plant in S1and S2 groups reduced significantly, and they were only 63.1% and 38.5% respectively of the control. Compared with the first flooding, total leaf length of a plant in the control increased signifi- cantly and decreased remarkably in S2 group after the second flooding. Furthermore, light response ability of the relative electronic transfer rate (rETR) in S1 group wasn't significantly different from the control, and rETRmax, in S2 group was significantly less than the control. Moreover, non- photochemical quenching (NPQ) decreased remarkably in S1 and S2 groups. It indicated that A. calamus had good restore ability of the light re- sponse, but restoring of its heat dissipation capacity was slower. [ Conclusion] Repeated flooding inhibited plant growth and population recovery of A. calamus under the dark condition.展开更多
In order to resolve the discharge problem of the polymer-flooding produced water (PFPW) in crude oil ex-traction, the PFPW was treated by a four-grade and four-segment (four GS) electrodialysis reversal(EDR) set-up. T...In order to resolve the discharge problem of the polymer-flooding produced water (PFPW) in crude oil ex-traction, the PFPW was treated by a four-grade and four-segment (four GS) electrodialysis reversal(EDR) set-up. The testing results show that the treated PFPW has two kinds, one is the diluted treated PFPW, the total dissolved solids (TDS) of the diluted treated PFPW is less than the original PFPW, the diluted treated PFPW is feasible for confecting polymer solution;another one is the concentrated treated PFPW, the TDS of the concentrated treated PFPW exceeds the original PFPW, the concentrated treated PFPW is feasible for replacing the PFPW as the injecting water in the water-flooding process for high permeability layer. This treatment technology can not only decrease environment pollution resulted by the PFPW discharge, but also achieve closed-circuit of the water resource during crude oil extraction by using polymer flooding technology.展开更多
Collecting 44 oil-sand specimens of Pu-I Member in two inspection wells before and after polymer flooding in the thirteenth district of Xingshugang oilfield,with experimental analysis,the author obtained the data abou...Collecting 44 oil-sand specimens of Pu-I Member in two inspection wells before and after polymer flooding in the thirteenth district of Xingshugang oilfield,with experimental analysis,the author obtained the data about oil viscosity,flow,oil saturation and oil displacement efficiency.The result shows that viscous oil predominates in the main remaining oil in Xingshugang oilfield after water flooding with a certain amount of low viscosity oil,high viscosity oil and heavy oil;after polymer flooding,the viscous oil is main ingredient.Compared with water flooding,the low mobility and poor oil can be spread by polymer flooding,expanding the affected area and improving sweep efficiency and oil recovery.The geochemical affecting factors of water flooding and oil displacement efficiency refer to reservoir flow,permeability and the viscosity of residual oil.In the reservoir with permeability from low to high,the polymer flooding efficiency is better than water flooding.It provides the basis for improving the water and polymer flooding efficiency of the Xingshugang oilfield.展开更多
To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase...To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.展开更多
In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infi...In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.展开更多
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood...With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.展开更多
The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfie...The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfield development coring wells were analyzed by high-temperature gas chromatography (HTGC),for the relative abundance of C 21-,C 21-C 40 and C 40+ hydrocarbons.The relationship between viscosity of crude oil and C 40+ (%) hydrocarbons abundance is used to expect the viscosity of remaining oil.The mobility characteristics of remaining oil,the properties of remaining oil,and the next displacement methods in reservoirs either water-flooded or polymer-flooded are studied with rock permeability,oil saturation of coring wells,etc.The experimental results show that the hydrocarbons composition,viscosity,and mobility of remaining oil from both polymer-flooding and water-flooding reservoirs are heterogeneous,especially the former.Relative abundance of C 21- and C 21-C 40 hydrocarbons in polymer-flooding reservoirs is lower than that of water-flooding,but with more abundance of C 40+ hydrocarbons.It is then suggested that polymer flooding must have driven more C 40- hydrocarbons out of reservoir,which resulted in relatively enriched C 40+,more viscous oils,and poorer mobility.Remaining oil in water-flooding reservoirs is dominated by moderate viscosity oil with some low viscosity oil,while polymer-flooding mainly contained moderate viscosity oil with some high viscosity oil.In each oilfield and reservoir,displacement methods of remaining oil,viscosity,and concentration by polymer-solution can be adjusted by current viscosity of remaining oil and mobility ratio in a favorable range.A new basis and methods are suggested for the further development and enhanced oil recovery of remaining oil.展开更多
[Objective] The aim was to study the flood disaster risks in Anhui Province based on GIS. [Method] Taking country as basic unit, the 1∶ 250 000 basic geographic data in Anhui Province as basis, from the angle of floo...[Objective] The aim was to study the flood disaster risks in Anhui Province based on GIS. [Method] Taking country as basic unit, the 1∶ 250 000 basic geographic data in Anhui Province as basis, from the angle of flood disaster hazard and economic vulnerability, and by dint of the calculation of the weight of each impact factor with entropy-based fuzzy AHP method, flood risk assessment model was established to study the flood disaster risks zoning in Anhui Province. Using nearly 10 years of disaster information in Anhui Province, the flood risk zoning of Anhui Province was studied. And the risks evaluation results of flood disaster risks in Anhui Province in recent 10 years were checked. [Result] The regional difference of flood disaster in Anhui Province was large. The most serious area of flood disaster was in Lingquan in Fuyang and Lingbi in Huaibei. The risks degree degraded from south mountainous area in north Anhui Plain to the mountainous area of west Anhui Province, from Huaibei Plain to the hilly area of Jianghuai and mountainous area of south Anhui Province. The disaster situation in Anhui Province in recent 10 years suggested that the areas suffering from serious economic losses were in Lingbi, Guzheng and Huainan in the south part of Huaibei Plain. The places having serious agricultural crops damages were in Tangshan and Xiao County in Huaibei Plain. Besides, the Jingzhai area in the Dabieshan in west Anhui Province also had serious agricultural crops in Jinzhai. Other places had limited disaster-stricken impacts; the distribution of disaster-stricken population and impacted area of agricultural crops were basically consistent. Therefore, the risk evaluation of flood disaster of Anhui Province based on GIS was basically consistent with reality. [Conclusion] This GIS-based flood risk zoning method had good practicability.展开更多
基金Supported by Natural Science Foundation Project,Chongqing Science and Technology Commission(CSTC) ,China(2009BB7255)Talent Start-up Foundation Project ,Chongqing University of Arts and Science,ChinaScience Research Project,Chongqing University of Arts and Science(XZ031)
文摘[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exposed to water under the dark conditions respectively in Septem- ber 2009 and September 2010. Then, they were taken away from the water, and grew in natural conditions in the following March and April respec- tively ( marked as S1, S2, S1 and S2). The plant number was conducted statistics respectively. On May 7, the leaf number was made statistics. Length, width and rapid light responding curve of the leaf were determined. [ Result] Repeated flooding restrained significantly plant germination un- der the dark condition. Plant number in S1 and S2 groups decreased by 38.9% and 33.3% respectively compared with the control. It also reduced survival rate of the plant. Plant number in S2 group decreased by 16.7% (P 〈 0.05) compared with that of S2 group when they were taken away from the water. Both of flooding promoted elongation of the leaves, restrained leaves to grow wider, and also restrained leaf formation of the plants except for S1 and S1 groups. Total leaf length of a plant decreased markedly after the second flooding which in S1 and S2 groups were 50.6% and 36.9% respectively less than that after the first flooding. Total leaf number of the plant in S1and S2 groups reduced significantly, and they were only 63.1% and 38.5% respectively of the control. Compared with the first flooding, total leaf length of a plant in the control increased signifi- cantly and decreased remarkably in S2 group after the second flooding. Furthermore, light response ability of the relative electronic transfer rate (rETR) in S1 group wasn't significantly different from the control, and rETRmax, in S2 group was significantly less than the control. Moreover, non- photochemical quenching (NPQ) decreased remarkably in S1 and S2 groups. It indicated that A. calamus had good restore ability of the light re- sponse, but restoring of its heat dissipation capacity was slower. [ Conclusion] Repeated flooding inhibited plant growth and population recovery of A. calamus under the dark condition.
文摘In order to resolve the discharge problem of the polymer-flooding produced water (PFPW) in crude oil ex-traction, the PFPW was treated by a four-grade and four-segment (four GS) electrodialysis reversal(EDR) set-up. The testing results show that the treated PFPW has two kinds, one is the diluted treated PFPW, the total dissolved solids (TDS) of the diluted treated PFPW is less than the original PFPW, the diluted treated PFPW is feasible for confecting polymer solution;another one is the concentrated treated PFPW, the TDS of the concentrated treated PFPW exceeds the original PFPW, the concentrated treated PFPW is feasible for replacing the PFPW as the injecting water in the water-flooding process for high permeability layer. This treatment technology can not only decrease environment pollution resulted by the PFPW discharge, but also achieve closed-circuit of the water resource during crude oil extraction by using polymer flooding technology.
文摘Collecting 44 oil-sand specimens of Pu-I Member in two inspection wells before and after polymer flooding in the thirteenth district of Xingshugang oilfield,with experimental analysis,the author obtained the data about oil viscosity,flow,oil saturation and oil displacement efficiency.The result shows that viscous oil predominates in the main remaining oil in Xingshugang oilfield after water flooding with a certain amount of low viscosity oil,high viscosity oil and heavy oil;after polymer flooding,the viscous oil is main ingredient.Compared with water flooding,the low mobility and poor oil can be spread by polymer flooding,expanding the affected area and improving sweep efficiency and oil recovery.The geochemical affecting factors of water flooding and oil displacement efficiency refer to reservoir flow,permeability and the viscosity of residual oil.In the reservoir with permeability from low to high,the polymer flooding efficiency is better than water flooding.It provides the basis for improving the water and polymer flooding efficiency of the Xingshugang oilfield.
基金Supported by the China Postdoctoral Science Foundation(Grant No.2018M641610)China National Science and Technology Major Project(2016ZX05025-003)
文摘To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.
基金This study was funded by the survey projects initiated by the Ministry of Natural Resources of the People’s Republic of China(1212010741003,1212011220224,and 121201011000150022)China Geological Survey(DD20189220,DD20211317)+2 种基金the public welfare scientific research project launched by the Ministry of Natural Resources of the People’s Republic of China(201111020)the project of 2015 Natural Science Basic Research Plan of Shaanxi Province of China(2015JM4129)the project of 2016 Fundamental Research Funds for the Central Universities of China(an open-end fund)(310829161128).
文摘In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.
基金Supported by National Science and Technology Major Project of China (51674271)Major Technical Field Test of PetroChina (2019F-33)。
文摘With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil.
基金supported by National Basic Research Program of China(Grant No.2006CB701404)
文摘The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfield development coring wells were analyzed by high-temperature gas chromatography (HTGC),for the relative abundance of C 21-,C 21-C 40 and C 40+ hydrocarbons.The relationship between viscosity of crude oil and C 40+ (%) hydrocarbons abundance is used to expect the viscosity of remaining oil.The mobility characteristics of remaining oil,the properties of remaining oil,and the next displacement methods in reservoirs either water-flooded or polymer-flooded are studied with rock permeability,oil saturation of coring wells,etc.The experimental results show that the hydrocarbons composition,viscosity,and mobility of remaining oil from both polymer-flooding and water-flooding reservoirs are heterogeneous,especially the former.Relative abundance of C 21- and C 21-C 40 hydrocarbons in polymer-flooding reservoirs is lower than that of water-flooding,but with more abundance of C 40+ hydrocarbons.It is then suggested that polymer flooding must have driven more C 40- hydrocarbons out of reservoir,which resulted in relatively enriched C 40+,more viscous oils,and poorer mobility.Remaining oil in water-flooding reservoirs is dominated by moderate viscosity oil with some low viscosity oil,while polymer-flooding mainly contained moderate viscosity oil with some high viscosity oil.In each oilfield and reservoir,displacement methods of remaining oil,viscosity,and concentration by polymer-solution can be adjusted by current viscosity of remaining oil and mobility ratio in a favorable range.A new basis and methods are suggested for the further development and enhanced oil recovery of remaining oil.
基金Supported by Natural Science Foundation of Educational Administration of Anhui Province(KJ2010B422)
文摘[Objective] The aim was to study the flood disaster risks in Anhui Province based on GIS. [Method] Taking country as basic unit, the 1∶ 250 000 basic geographic data in Anhui Province as basis, from the angle of flood disaster hazard and economic vulnerability, and by dint of the calculation of the weight of each impact factor with entropy-based fuzzy AHP method, flood risk assessment model was established to study the flood disaster risks zoning in Anhui Province. Using nearly 10 years of disaster information in Anhui Province, the flood risk zoning of Anhui Province was studied. And the risks evaluation results of flood disaster risks in Anhui Province in recent 10 years were checked. [Result] The regional difference of flood disaster in Anhui Province was large. The most serious area of flood disaster was in Lingquan in Fuyang and Lingbi in Huaibei. The risks degree degraded from south mountainous area in north Anhui Plain to the mountainous area of west Anhui Province, from Huaibei Plain to the hilly area of Jianghuai and mountainous area of south Anhui Province. The disaster situation in Anhui Province in recent 10 years suggested that the areas suffering from serious economic losses were in Lingbi, Guzheng and Huainan in the south part of Huaibei Plain. The places having serious agricultural crops damages were in Tangshan and Xiao County in Huaibei Plain. Besides, the Jingzhai area in the Dabieshan in west Anhui Province also had serious agricultural crops in Jinzhai. Other places had limited disaster-stricken impacts; the distribution of disaster-stricken population and impacted area of agricultural crops were basically consistent. Therefore, the risk evaluation of flood disaster of Anhui Province based on GIS was basically consistent with reality. [Conclusion] This GIS-based flood risk zoning method had good practicability.