Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretatio...Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretation to produce sub-surface structure map. Geophysical well log signatures were employed in identifying hydrocarbon bearing sand. The well-to-seismic tie revealed that the reservoir tied directly with hydrocarbon indicator (bright spot) on the seismic sections. The major structure responsible for the hydrocarbon entrapment is anticline. The crest of the anticline from the depth structural map occurs at 3450 metres.展开更多
Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it...Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.展开更多
Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural ...Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.展开更多
Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by i...Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.展开更多
This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Ru...This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics展开更多
成都平原属暖湿亚热带太平洋东南季风气候区,中小尺度天气系统十分活跃,雷电活动频繁,分析和应用地基闪电定位系统(advanced direction and time-of-arrival detecting system,ADTD)闪电监测资料须对闪电数据实施质量优选。利用成都地区...成都平原属暖湿亚热带太平洋东南季风气候区,中小尺度天气系统十分活跃,雷电活动频繁,分析和应用地基闪电定位系统(advanced direction and time-of-arrival detecting system,ADTD)闪电监测资料须对闪电数据实施质量优选。利用成都地区2011—2020年间的闪电监测资料,分析得出成都地区小幅值闪电的时间分布特征。采用对数正态拟合分析方法得出成都地区闪电监测资料中小幅值地闪的干扰范围为绝对值≤3.10 kA,对数正态拟合检验表明剔除该部分闪电数据后拟合效果更佳。研究表明对数正态分析方法可以定量化确定成都地区小幅值闪电数据中的干扰区间,从而为该地区的闪电资料处理及应用提供了理论依据。展开更多
文摘Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretation to produce sub-surface structure map. Geophysical well log signatures were employed in identifying hydrocarbon bearing sand. The well-to-seismic tie revealed that the reservoir tied directly with hydrocarbon indicator (bright spot) on the seismic sections. The major structure responsible for the hydrocarbon entrapment is anticline. The crest of the anticline from the depth structural map occurs at 3450 metres.
基金partly supported by the National Natural Science Foundation of China(grants no.41272132 and 41572080)the Fundamental Research Funds for central Universities(grant no.2-9-2013-97)the Major State Science and Technology Research Programs(grants no.2008ZX05056-002-02-01 and 2011ZX05010-001-009)
文摘Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.
文摘Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.
文摘Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with lowresolution is converted into impedance data of high resolution which can reflect the geological structure by inversionThe inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the in-version test is also carried out using actual logging data. The result is identical with the measured data obtained fromroadway of coal mine. The field tests and research results indicate that this method can provide more accurate data foridentifying thin coal seam and minor faults.
文摘This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics
文摘成都平原属暖湿亚热带太平洋东南季风气候区,中小尺度天气系统十分活跃,雷电活动频繁,分析和应用地基闪电定位系统(advanced direction and time-of-arrival detecting system,ADTD)闪电监测资料须对闪电数据实施质量优选。利用成都地区2011—2020年间的闪电监测资料,分析得出成都地区小幅值闪电的时间分布特征。采用对数正态拟合分析方法得出成都地区闪电监测资料中小幅值地闪的干扰范围为绝对值≤3.10 kA,对数正态拟合检验表明剔除该部分闪电数据后拟合效果更佳。研究表明对数正态分析方法可以定量化确定成都地区小幅值闪电数据中的干扰区间,从而为该地区的闪电资料处理及应用提供了理论依据。