Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un...The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.展开更多
In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow st...In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r...With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear...This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.展开更多
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the targ...A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
This paper is concerned with fundamental properties of a class of composite systems with fractional degree generalized frequency variables, including controllability, observability and stability. Firstly, some necessa...This paper is concerned with fundamental properties of a class of composite systems with fractional degree generalized frequency variables, including controllability, observability and stability. Firstly, some necessary and sufficient conditions are given to guarantee controllability and observability of such composite systems. Then we prove that the stability problem of such composite systems can be reduced to judging whether a fractional degree polynomial is stable. Finally, the stability analysis result is applied in the supervisory control of fractional-order multi-agent systems, and an example is provided to illustrate the effectiveness of the proposed methods.展开更多
A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability...A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.展开更多
The insertion of the communication network in the feedback control loop makes the analysis and design of a network control system more complex, and induces some issues that degrade the control system's performance an...The insertion of the communication network in the feedback control loop makes the analysis and design of a network control system more complex, and induces some issues that degrade the control system's performance and even cause system instability. The main aspects are focused on the stability analysis of Network Control Systems (NCSs) with network-induced delays, data packet dropouts, and multiple-packet transmission. These issues must be considered in the design of an NCS. This work summarizes the main research results, and remarks on some related handling approaches and techniques. The main purpose of the survey is to present the new research state of NCSs and to point out some fields of future work.展开更多
Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this c...Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this contradiction.We used relaxed static stability(RSS)to improve the maneuverability in hypersonic flight,and designed the stability augmentation system(SAS)to ensure the stability in subsonic flight.Therefore,the relationship between static stability and maneuverability was quantitatively analyzed in the first step,and the numerical value of RSS was obtained on the premise of good maneuverability.Secondly,the relationship between static stability and aerodynamic parameters was quantitatively analyzed.We properly adjusted aerodynamic parameters based on the quantitative relationship to achieve the specific static stability set in the first step,and therefore provided the engineering realization methods.The vehicle will be statically unstable in subsonic flight with the specific static stability.Lastly,SAS was needed to ensure the stability of the vehicle in subsonic flight.Simulation studies were conducted by comparing the linear SAS to the nonlinear SAS,and the results showed that the nonlinear dynamicinversion controller can synthesize with proportional-integrall-derivative(PID)controller robustly and stabilize the hypersonic vehicle.展开更多
Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is...Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is established. Stability condition is derived from the mathematical model. Several simulation experiments are performed. The results show that the method can increase the stability of data transferred in terms of the congestion window, queue size, and sending rate of the source.展开更多
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ...The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.展开更多
In this contribution, inside turning of a thin-walled cylinder is investigated in simulation. Self-excited vibrations can arise due to repeated cutting of the same surface, that lead to instability.A flexible multibod...In this contribution, inside turning of a thin-walled cylinder is investigated in simulation. Self-excited vibrations can arise due to repeated cutting of the same surface, that lead to instability.A flexible multibody system model of the system is the basis for a subsequent analysis of the stability of the process. Stability analysis is done using an approximation as a time-discrete system via the semi-discretization method. An adaptronic turning chisel comprising a piezo actuator and sensors is then used in combination with different control concepts to improve the stability of the process. The effectiveness of the different strategies is compared based on the influence on the stability charts. A classic H∞ controller based on a model of the coupled system of workpiece and tool can only yield some improvements, when an additional measurement of the workpiece displacement is added. Incorporating knowledge on the cutting process coupling workpiece and tool using a gain scheduled H∞ controller allows further improvements. However, robustness with respect to model uncertainties, notably concerning the force law, remains an issue. C 2013 The Chinese Society of Theoretical and Applie-d Mechanics. [doi:10.1063/2.1301308]展开更多
This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based...This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based on the zero dynamics method aims at enhancing the transient stability of multi-machine power systems under a wide range of operating conditions. The proposed approach was implemented to the IEEE39-bus power systems. Transient stability margin measured in terms of critical clearing time along with eigenvalue analysis and time domain simulations were considered in the performance assessment. The obtained results were also compared to those achieved using a conventional power system stabilizer/power oscillation(PSS/POD) technique and the interconnection and damping assignment passivity-based controller(IDA-PBC). The performance analysis confirmed the ability of the proposed approach to enhance damping and improve system’s transient stability margin under a wide range of operating conditions.展开更多
This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for t...This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall's inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.展开更多
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
基金financial support provided by the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)Major Project of Regional Joint Foundation of China(No.U21A20107)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2024JJ4021)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)。
文摘The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.
文摘In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51991361)the foundation of China University of Petroleum(Beijing)(Grant No.2462021YXZZ002).
文摘With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.
基金Project supported by the Hi-Tech Research and Development Program of China (863) (Grant No 2007AA05Z229)National Natural Science Foundation of China (Grant Nos 50877028, 60774069 and 10862001)Science Foundation of Guangdong Province (Grant No 8251064101000014)
文摘This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142)the Scientific Research Fund of the Educational Department of Zhejiang Province,China (Grant No.Z201119278)+2 种基金the Natural Science Foundation of Ningbo,China (Grant Nos.2012A610152 and 2012A610038)the Disciplinary Project of Ningbo,China (Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘A car-following model is presented, in which the effects of non-motor vehicles on adjacent lanes are taken into ac- count. A control signal including the velocity differences between the following vehicle and the target vehicle is introduced according to the feedback control theory. The stability condition for the new model is derived. Numerical simulation is used to demonstrate the advantage of the new model including the control signal; the results are consistent with the analytical ones
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
基金supported by Foundation of Shanxi Scholarship Council(2016-075)Natural Science Foundation of Shanxi Normal University(ZR1601)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(2018-25)
文摘This paper is concerned with fundamental properties of a class of composite systems with fractional degree generalized frequency variables, including controllability, observability and stability. Firstly, some necessary and sufficient conditions are given to guarantee controllability and observability of such composite systems. Then we prove that the stability problem of such composite systems can be reduced to judging whether a fractional degree polynomial is stable. Finally, the stability analysis result is applied in the supervisory control of fractional-order multi-agent systems, and an example is provided to illustrate the effectiveness of the proposed methods.
基金partially supported by the National Natural Science Foundation of China (60574011).
文摘A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.
基金This work was supported by the Youth Natural Science Foundation of AUTS(No.2005YQ002)Natural Science Foundation of Anhui ProvincialEducation Department(No.2006KJ031B).
文摘The insertion of the communication network in the feedback control loop makes the analysis and design of a network control system more complex, and induces some issues that degrade the control system's performance and even cause system instability. The main aspects are focused on the stability analysis of Network Control Systems (NCSs) with network-induced delays, data packet dropouts, and multiple-packet transmission. These issues must be considered in the design of an NCS. This work summarizes the main research results, and remarks on some related handling approaches and techniques. The main purpose of the survey is to present the new research state of NCSs and to point out some fields of future work.
基金supported in part by the National Natural Science Foundation of China(Nos.61673209,61741313)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXZZ13_0170)+3 种基金the Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ13-06)the Jiangsu Six Peak of Talents Program(No.KTHY-027)the Funding of China Launch Vehicle Technology Innovation Program of University and Institute(No.CALT201503)the Aeronautical Science Foundation(No.2016ZA52009)
文摘Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this contradiction.We used relaxed static stability(RSS)to improve the maneuverability in hypersonic flight,and designed the stability augmentation system(SAS)to ensure the stability in subsonic flight.Therefore,the relationship between static stability and maneuverability was quantitatively analyzed in the first step,and the numerical value of RSS was obtained on the premise of good maneuverability.Secondly,the relationship between static stability and aerodynamic parameters was quantitatively analyzed.We properly adjusted aerodynamic parameters based on the quantitative relationship to achieve the specific static stability set in the first step,and therefore provided the engineering realization methods.The vehicle will be statically unstable in subsonic flight with the specific static stability.Lastly,SAS was needed to ensure the stability of the vehicle in subsonic flight.Simulation studies were conducted by comparing the linear SAS to the nonlinear SAS,and the results showed that the nonlinear dynamicinversion controller can synthesize with proportional-integrall-derivative(PID)controller robustly and stabilize the hypersonic vehicle.
基金the National Natural Science Foundation of China (50579022 50539140).
文摘Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is established. Stability condition is derived from the mathematical model. Several simulation experiments are performed. The results show that the method can increase the stability of data transferred in terms of the congestion window, queue size, and sending rate of the source.
基金supported in part by the National Outstanding Youth Foundation of P.R.China (60525303)the National Natural Science Foundation of P.R.China(60404022,60604004)+2 种基金the Natural Science Foundation of Hebei Province (102160)the special projects in mathematics funded by the Natural Science Foundation of Hebei Province(07M005)the NS of Education Office in Hebei Province (2004123).
文摘The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.
基金funded by the Baden-Württemberg Stiftung and the Stuttgart Cluster of Excellence in Simulation Technology,SimTech
文摘In this contribution, inside turning of a thin-walled cylinder is investigated in simulation. Self-excited vibrations can arise due to repeated cutting of the same surface, that lead to instability.A flexible multibody system model of the system is the basis for a subsequent analysis of the stability of the process. Stability analysis is done using an approximation as a time-discrete system via the semi-discretization method. An adaptronic turning chisel comprising a piezo actuator and sensors is then used in combination with different control concepts to improve the stability of the process. The effectiveness of the different strategies is compared based on the influence on the stability charts. A classic H∞ controller based on a model of the coupled system of workpiece and tool can only yield some improvements, when an additional measurement of the workpiece displacement is added. Incorporating knowledge on the cutting process coupling workpiece and tool using a gain scheduled H∞ controller allows further improvements. However, robustness with respect to model uncertainties, notably concerning the force law, remains an issue. C 2013 The Chinese Society of Theoretical and Applie-d Mechanics. [doi:10.1063/2.1301308]
文摘This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based on the zero dynamics method aims at enhancing the transient stability of multi-machine power systems under a wide range of operating conditions. The proposed approach was implemented to the IEEE39-bus power systems. Transient stability margin measured in terms of critical clearing time along with eigenvalue analysis and time domain simulations were considered in the performance assessment. The obtained results were also compared to those achieved using a conventional power system stabilizer/power oscillation(PSS/POD) technique and the interconnection and damping assignment passivity-based controller(IDA-PBC). The performance analysis confirmed the ability of the proposed approach to enhance damping and improve system’s transient stability margin under a wide range of operating conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60702023)the Key Scientific and Technological Project of Zhejiang Province of China (Grant No. 2007C11094)
文摘This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall's inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.