By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gord...By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)...In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)+Dt^(2))by using the error splitting technique and postprocessing interpolation.Numerical experiments are carried out to support our theoretical results.展开更多
In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the c...In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the coupled Klein-Gordon equations. The obtained results include periodic and solitary wave solutions. The first integral method presents a wider applicability to handling nonlinear wave equations.展开更多
The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper w...The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.展开更多
This paper deals with a type of standing waves for the coupled nonlinear Klein-Gordon equations in three space dimensions. First we construct a suitable constrained variational problem and obtain the existence of the ...This paper deals with a type of standing waves for the coupled nonlinear Klein-Gordon equations in three space dimensions. First we construct a suitable constrained variational problem and obtain the existence of the standing waves with ground state by using variational argument. Then we prove the orbital instability of the standing waves by defining invariant sets and applying some priori estimates.展开更多
This paper deals with the standing waves for a class of coupled nonlinear Klein-Gordon equations with space dimension N ≥ 3, 0 〈 p, q 〈 2/N-2 and p + q 〈 4/N. By using the variational calculus and scaling argumen...This paper deals with the standing waves for a class of coupled nonlinear Klein-Gordon equations with space dimension N ≥ 3, 0 〈 p, q 〈 2/N-2 and p + q 〈 4/N. By using the variational calculus and scaling argument, we establish the existence of standing waves with ground state, discuss the behavior of standing waves as a function of the frequency ω and give the sufficient conditions of the stability of the standing waves with the least energy for the equations under study.展开更多
The(1+1)-dimensional nonlinear Klein-Gordon-Zakharov equation considered as a model equation for describing the interaction of the Langmuir wave and the ion acoustic wave in high frequency plasma.By the execution of t...The(1+1)-dimensional nonlinear Klein-Gordon-Zakharov equation considered as a model equation for describing the interaction of the Langmuir wave and the ion acoustic wave in high frequency plasma.By the execution of the exp(-Φ(ξ))-expansion,we obtain new explicit and exact traveling wave solutions to this equation.The obtained solutions include kink,singular kink,periodic wave solutions,soliton solutions and solitary wave solutions of bell types.The variety of structure and graphical representation make the dynamics of the equations visible and provides the mathematical foundation in plasma physics and engineering.&2015 National Laboratory for Aeronautics and Astronautics.Production and hosting by Elsevier B.V.展开更多
文摘By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金The work is supported by the National Natural Science Foundation of China(No.11871441)Beijing Natural Science Foundation(No.1192003).
文摘In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)+Dt^(2))by using the error splitting technique and postprocessing interpolation.Numerical experiments are carried out to support our theoretical results.
文摘In this paper, we establish travelling wave solutions for some nonlinear evolution equations. The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the coupled Klein-Gordon equations. The obtained results include periodic and solitary wave solutions. The first integral method presents a wider applicability to handling nonlinear wave equations.
文摘The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.
基金This work is supported by National Natural Science Foundation of P. R. China(10801102, 10726034, 10771151)and Sichuan Youth Science and Technology Foundation(07ZQ026-009).
文摘This paper deals with a type of standing waves for the coupled nonlinear Klein-Gordon equations in three space dimensions. First we construct a suitable constrained variational problem and obtain the existence of the standing waves with ground state by using variational argument. Then we prove the orbital instability of the standing waves by defining invariant sets and applying some priori estimates.
基金Supported by the National Natural Science Foundation of China (No. 10771151, 10801102)Sichuan Youth Sciences and Technology Foundation(No. 07ZQ026-009)China Postdoctoral Science Foundation Funded Project
文摘This paper deals with the standing waves for a class of coupled nonlinear Klein-Gordon equations with space dimension N ≥ 3, 0 〈 p, q 〈 2/N-2 and p + q 〈 4/N. By using the variational calculus and scaling argument, we establish the existence of standing waves with ground state, discuss the behavior of standing waves as a function of the frequency ω and give the sufficient conditions of the stability of the standing waves with the least energy for the equations under study.
文摘The(1+1)-dimensional nonlinear Klein-Gordon-Zakharov equation considered as a model equation for describing the interaction of the Langmuir wave and the ion acoustic wave in high frequency plasma.By the execution of the exp(-Φ(ξ))-expansion,we obtain new explicit and exact traveling wave solutions to this equation.The obtained solutions include kink,singular kink,periodic wave solutions,soliton solutions and solitary wave solutions of bell types.The variety of structure and graphical representation make the dynamics of the equations visible and provides the mathematical foundation in plasma physics and engineering.&2015 National Laboratory for Aeronautics and Astronautics.Production and hosting by Elsevier B.V.