期刊文献+
共找到1,894篇文章
< 1 2 95 >
每页显示 20 50 100
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
1
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale Finite element method MAGNETO-ELECTRO-ELASTIC Multifield coupling Numerical Base Functions
下载PDF
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
2
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage Damage localization Finite element method
下载PDF
A new thermomechanical coupled FDEM model for geomaterials considering continuum-discontinuum transitions
3
作者 Zihan Liu Louis Ngai Yuen Wong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4654-4668,共15页
A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials... A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media. 展开更多
关键词 Finite-discrete element method(FDEM) Thermomechanical(TM)coupling Thermal cracking Contact heat transfer GEOMATERIALS
下载PDF
A coupled cryogenic thermo-hydro-mechanical model for frozen medium:Theory and implementation in FDEM
4
作者 Lei Sun Xuhai Tang +3 位作者 Kareem Ramzy Aboayanah Qi Zhao Quansheng Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4335-4353,共19页
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret... This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions. 展开更多
关键词 Thermo-hydro-mechanical(THM)coupling Low temperature Heat transfer Water migration Frost heave Combined finite-discrete element method(FDEM)
下载PDF
The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method 被引量:16
5
作者 GAO Jingjing LIU Jihua +3 位作者 LI Xianguo YAN Quanshu WANG Xiaojing WANG Hongmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第1期109-117,共9页
An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud... An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples. 展开更多
关键词 marine geological sample high-pressure closed digestion method inductively coupled plasma optical emission spectrometry inductively coupled plasma mass spectrometry major element minor element trace element
下载PDF
Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method 被引量:2
6
作者 Yi-Xin Huang Hao Tian Yang Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期954-962,共9页
The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a ... The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized. 展开更多
关键词 Beam-cable coupled system Double-beam system Chebyshev spectral element method Natural frequency Mode shape
下载PDF
Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation 被引量:1
7
作者 郝宽胜 黄松岭 +1 位作者 赵伟 王珅 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期490-497,共8页
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i... This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. 展开更多
关键词 electromagnetic acoustic transducer nondestructive testing circuit-field coupling finite element method
下载PDF
ANALYSIS OF THE THERMOPHYSICAL PARAMETERS OF MOIST WOOD PARTICLE MATERIAL IN A COUPLED HEAT AND MASS TRANSFER PROCESS OF FREEZING BY USING FINITE ELEMENT METHOD
8
作者 Shang DekuNortheast Forestry University 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1991年第2期69-76,共8页
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met... The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment. 展开更多
关键词 Finite element method Freezing process coupled heat and mass transfer Variable thermophysical parameters
下载PDF
GPU-Based Simulation of Dynamic Characteristics of Ballasted Railway Track with Coupled Discrete-Finite Element Method
9
作者 Xu Li YingYan +1 位作者 Shuai Shao Shunying Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期645-671,共27页
Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irr... Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks. 展开更多
关键词 Ballasted track coupled discrete element-finite element method GPU parallel algorithm dynamic characteristics
下载PDF
A New Unified Stabilized Mixed Finite Element Method of the Stokes-Darcy Coupled Problem: Isotropic Discretization
10
作者 Houédanou Koffi Wilfrid 《Journal of Applied Mathematics and Physics》 2021年第7期1673-1706,共34页
In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N<... In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method. 展开更多
关键词 coupled Stokes and Darcy Flows Nonconforming Finite element method Crouzeix-Raviart element
下载PDF
An element-free Galerkin(EFG) method for numerical solution of the coupled Schrdinger-KdV equations
11
作者 刘永庆 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期79-87,共9页
The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditiona... The present paper deals with the numerical solution of the coupled Schrodinger-KdV equations using the elementfree Galerkin (EFG) method which is based on the moving least-square approximation. Instead of traditional mesh oriented methods such as the finite difference method (FDM) and the finite element method (FEM), this method needs only scattered nodes in the domain. For this scheme, a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method. In numerical experiments, the results are presented and compared with the findings of the finite element method, the radial basis functions method, and an analytical solution to confirm the good accuracy of the presented scheme. 展开更多
关键词 element-free Galerkin (EFG) method meshless method the coupled Schr6dinger-KdV equations
下载PDF
Numerical analysis of coupled finite element with element-free Galerkin in sheet flexible-die forming 被引量:7
12
作者 王忠金 袁斌先 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期462-469,共8页
A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite e... A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite element method (FEM) and the bulk deformation of flexible-die was analyzed with element-free Galerkin method (EFGM). The frictional contact between sheet metal and flexible-die was treated by the penalty function method. The sheet elastic flexible-die bulging process was analyzed with the FEM-EFGM program for coupled deformation between sheet metal and bulk flexible-die, called CDSB-FEM-EFGM for short. Compared with finite element code DEFORM-2D and experiment results, the CDSB-FEM-EFGM program is feasible. This method provides a suitable numerical method to analyze sheet flexible-die forming. 展开更多
关键词 sheet flexible-die forming finite element method element-free Galerkin method coupling aluminum alloy
下载PDF
ELECTRO-MECHANICAL COUPLING ANALYSIS OF MEMS STRUCTURES BY BOUNDARY ELEMENT METHOD 被引量:1
13
作者 张恺 崔云俊 +2 位作者 熊春阳 王丛舜 方竞 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期185-191,共7页
In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research gr... In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples. 展开更多
关键词 MEMS boundary element method(BEM) electro-mechanical coupling
下载PDF
THE COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT METHODS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS 被引量:2
14
作者 何银年 李开泰 《Acta Mathematica Scientia》 SCIE CSCD 1991年第2期190-207,共18页
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat... In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided. 展开更多
关键词 THE couplING OF BOUNDARY element AND FINITE element methodS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS
下载PDF
Characteristics of permanent magnet linear synchronous motor fed by spwm inverter based on field-circuit coupled method 被引量:1
15
作者 司纪凯 陈昊 +2 位作者 汪旭东 焦留成 袁世鹰 《Journal of Coal Science & Engineering(China)》 2008年第1期147-151,共5页
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the... Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results. 展开更多
关键词 permanent magnet linear synchronous motor sinusoidal pulse width modula-tion (SPWM) voltage source inverter CHARACTERISTICS field-circuit coupled adaptive time-stepping finite element method
下载PDF
Calculation of the Coupling Coefficient of Twin-Core Fiber Based on the Supermode Theory with Finite Element Method 被引量:1
16
作者 Tianhao Zhao Wenhua Ren +1 位作者 Tingya Yin Fan Wang 《Optics and Photonics Journal》 2021年第8期402-411,共10页
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app... <div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div> 展开更多
关键词 coupling Coefficient Twin-Core Fiber Supermode Theory Finite element method coupled Mode Theory
下载PDF
ANALYSIS OF COMPOSITE LAMINATE BEAMS USING COUPLING CROSS-SECTION FINITE ELEMENT METHOD
17
作者 姜文光 John L.Henshall 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1709-1718,共10页
Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of c... Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of complexity, and thus time, to the stress and deformation analyses of such components, even using numerical approaches such as finite elements. The analysis of composite laminate beams subjected to uniform extension, bending, and/or twisting loads was performed by a novel implementation of the usual finite element method. Due to the symmetric features of the deformations, only a thin slice of the beam to be analysed needs to be modelled. Conventional threedimensional solid finite elements were used for the structural discretization. The accurate deformation relationships were formulated and implemented through the coupling of nodal translational degrees of freedom in the numerical analysis. A sample solution for a rectangular composite laminate beam is presented to show the validity and accuracy of the proposed method. 展开更多
关键词 composite material beam coupling equation finite element method extension BENDING TORSION
下载PDF
NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD
18
作者 ZHAO Guang-ming(赵光明) SONG Shun-cheng(宋顺成) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第8期982-988,共7页
Through the construction of a new ramp function, the element-flee Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the inte... Through the construction of a new ramp function, the element-flee Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective. 展开更多
关键词 element-free Galerkin method couplING ramp function finite element
下载PDF
An explicit finite element method for dynamic analysis in three-medium coupling system and its application
19
作者 赵成刚 李伟华 +1 位作者 王进廷 李亮 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期272-282,共11页
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ... In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given. 展开更多
关键词 fluid saturated porous medium-elastic single-phase medium-ideal fluid medium coupled system dynamic response analysis explicit finite element method
下载PDF
Verification of an Explicitly Coupled Thermal-Phase Field-Mechanical Electromagnetic (TPME) Framework by the Method of Manufactured Solutions
20
作者 Travis S. Ramsay 《Open Journal of Modelling and Simulation》 2021年第1期1-25,共25页
An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion... An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion of solid kerogen in oil shale to liquid oil through </span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"> pyrolysis by radio frequency heating. Radio frequency heating as a method of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis represents a tenable enhanced oil recovery method, whereby an applied electrical potential difference across a target oil shale formation is converted to thermal energy, heating the oil shale and causing it to liquify to become liquid oil. A number of <i></span><i><span style="font-family:Verdana;font-size:12px;">in-situ</span></i><span style="font-family:Verdana;font-size:12px;"></i> pyrolysis methods are reviewed but the focus of this work is on the verification of the TPME numerical framework to model radio frequency heating as a potential dielectric heating process for enhanced oil recovery.</span></span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">Very few studies exist which describe production from oil shale;furthermore, there are none that specifically address the verification of numerical models describing radio frequency heating. As a result, the Method of Manufactured Solutions (MMS) was used as an analytical verification method of the developed numerical code. Results show that the multiphysics finite element framework was adequately modeled enabling the simulation of kerogen conversion to oil as a part of the analysis of a TPME numerical model. 展开更多
关键词 Radio Frequency Heating In-Situ Pyrolysis Oil Shale MULTIPHYSICS Explicit coupling Finite element method method of Manufactured Solutions
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部