期刊文献+
共找到1,032篇文章
< 1 2 52 >
每页显示 20 50 100
ATheoretical and Applied Study of Seepage under Coupling Between Seepage Field and Stress Field
1
作者 黄涛 杨立中 寇川 《Journal of Modern Transportation》 1999年第2期181-189,共9页
In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this prob... In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given. 展开更多
关键词 seepage stress coupling mathematical model
下载PDF
A review of mechanical deformation and seepage mechanism of rock with filled joints
2
作者 Lei Yue Wei Li +2 位作者 Yu Liu Shuncai Li Jintao Wang 《Deep Underground Science and Engineering》 2024年第4期439-466,共28页
Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical... Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical properties that are weaker than those of intact rocks but stronger than those of rocks with fractures.The shape of the rock,filling material,prefabricatedfissure geometry,fissure roughness,fissure inclination angle,and other factors mainly influence the mechanical and seepage properties.This paper systematically reviews the research progress andfindings onfilled rock joints,focusing on three key aspects:mechanical properties,seepage properties,andflow properties under mechanical response.First,the study emphasizes the effects of prefabricated defects(shape,size,filling material,inclination angle,and other factors)on the mechanical properties of the rock.The fracture extension behavior of rock masses is revealed by the stress state of rocks withfilled joints under uniaxial compression,using advanced auxiliary test techniques.Second,the seepage properties of rocks withfilled joints are discussed and summarized through theoretical analysis,experi-mental research,and numerical simulations,focusing on organizing the seepage equations of these rocks.The study also considers the form of failure under stress-seepage coupling for both fullyfilled and partiallyfilledfissured rocks.Finally,the limitations in the current research on the rock withfilled joints are pointed out.It is emphasized that the specimens should more closely resemble real conditions,the analysis of mechanical indexes should be multi-parameterized,the construction of the seepage model should be refined,and the engineering coupling application should be multi-field-multiphase. 展开更多
关键词 destruction mechanism filled joints hydraulic coupling numerical simulations seepage
下载PDF
Flow field analysis and particle erosion of tunnel-slope systems under coupling between runoff and fast (slow) seepage
3
作者 Shuai Zhang Danqing Song +3 位作者 Ruiliang Zhang Kai Zhang Qi Zhao Suraksha Sharma 《Deep Underground Science and Engineering》 2024年第4期385-398,共14页
The presence of particles on the surface of a tunnel slope renders it susceptible to erosion by waterflow,which is a major cause of soil and water loss.In this study,a nonlinear mathematical model and a mechanical equi... The presence of particles on the surface of a tunnel slope renders it susceptible to erosion by waterflow,which is a major cause of soil and water loss.In this study,a nonlinear mathematical model and a mechanical equilibrium model are developed to investigate the distribution offlowfields and particle motion characteristics of tunnel slopes,respectively.The mathematical model offlowfields comprises three parts:a runoff region,a highly permeable soil layer,and a weakly permeable soil layer.The Navier‒Stokes equation controlsfluid motion in the runoff region,while the Brinkman-extended Darcy equation governs fast and slow seepage in the highly and weakly permeable soil layers,respectively.Analytical solutions are derived for the velocity profile and shear stress expression of the modelflowfield under the boundary condition of continuous transition of velocity and stress at thefluid‒solid interface.The shear stress distribution shows that the shear stress at the tunnel-slope surface is the largest,followed by the shear stress of the soil interface,indicating that particles in these two locations are most vulnerable to erosion.A mechanical equilibrium model of sliding and rolling of single particles is established at thefluid‒solid interface,and the safety factor of particle motion(sliding and rolling)is derived.Sensitivity analysis shows that by increasing the runoff depth,slope angle,and soil permeability,the erosion of soil particles will be aggravated on the tunnel-slope surface,but by increasing the particle diameter,particle-specific gravity,and particle stacking angle,the erosion resistance ability of the tunnel-slope surface particles will be enhanced.This study can serve as a reference for the analysis of surface soil and water loss in tunnel-slope systems. 展开更多
关键词 particle erosion particle motion runoff-fast(slow)seepage coupling shear stress profile tunnel-slope system velocity profile
下载PDF
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions 被引量:1
4
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 Coal and gas outburst Geo-dynamic system stress–damage–seepage coupling Elimination mechanism Instability criterion Gas extraction
下载PDF
STUDY ON COUPLING MODEL OF (SEEPAGE-FIELD) AND STRESS-FIELD FOR ROLLED CONTROL CONCRETE DAM 被引量:6
5
作者 顾冲时 苏怀智 周红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第3期355-363,共9页
Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters.... Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field. 展开更多
关键词 rolled control concrete dam (RCCD) interface seepage-field stress-field coupling analysis
下载PDF
Thermal-hydro-mechanical coupling stress intensity factor of brittle rock 被引量:3
6
作者 李鹏 饶秋华 +1 位作者 李卓 敬静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期499-508,共10页
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi... A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula. 展开更多
关键词 stress intensity factor thermal-hydro-mechanical coupling boundary collocation method fracture mechanism brittle rock
下载PDF
A state‑of‑the‑art review on rock seepage mechanism of water inrush disaster in coal mines 被引量:5
7
作者 Dan Ma Hongyu Duan +1 位作者 Jixiong Zhang Haibo Bai 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期1-28,共28页
Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush... Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review. 展开更多
关键词 Rock seepage mechanism Water inrush Coal mine stress-seepage coupling Flow regime transformation Rock erosion
下载PDF
Coupling mechanism between mining-induced deformation and permeability of coal 被引量:3
8
作者 Xue Dongjie Zhou Hongwei +1 位作者 Wang Chaosheng Li Dongping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期783-787,共5页
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th... The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit. 展开更多
关键词 Mining-induced mechanical behavior Coal deformation seepage coupling test
下载PDF
Hydro-mechanical coupling mechanism on joint of clay core-wall and concrete cut-off wall 被引量:3
9
作者 罗玉龙 詹美礼 +1 位作者 盛金昌 吴强 《Journal of Central South University》 SCIE EI CAS 2013年第9期2578-2585,共8页
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c... The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam. 展开更多
关键词 high earth and rockfill dam soil/structure interface hydro-mechanical coupling mechanism seepage failure shear failure
下载PDF
Study of the Seepage Mechanism in Thick Heterogeneous Gas Reservoirs
10
作者 Xin Huang Yunpeng Jiang +3 位作者 Daowu Huang Xianke He Xianguo Zhang Ping Guo 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1679-1691,共13页
The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,stro... The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,strong heterogeneity,and high water saturation.Moreover,their percolation mechanisms are more complex.The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressuredepletion conditions(from the Xihu Depression in the East China Sea Basin).It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity.The reservoir stress sensitivity is related to permeability and rock composition.Stress sensitivity is generally low when permeability is high or in the early stage of gas reservoir development.It is also shown that in sand conglomerates,especially the more sparsely filled parts,the interstitial materials among the conglomerates can be rapidly dislodged from the skeleton particles under stress.This material can therefore disperse,migrate,and block the pore throat producing serious,stress-sensitive damage. 展开更多
关键词 seepage mechanism low-permeability gas reservoir threshold pressure gradient stress sensitivity control factors
下载PDF
A new classification of seepage control mechanisms in geotechnical engineering 被引量:11
11
作者 Yifeng Chen Ran Hu +3 位作者 Chuangbing Zhou Dianqing Li Guan Rong Qinghui Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期209-222,共14页
Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mech... Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices. 展开更多
关键词 seepage flow seepage control mechanisms optimization design coupled processes initial states boundary conditions hydraulic properties
下载PDF
Development and validation of THM coupling model of methane-containing coal 被引量:3
12
作者 Tao Yunqi Xu Jiang +1 位作者 Liu Dong Liang Yongqing 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期868-872,共5页
Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-w... Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-way coupled mathematical model to reveal the connections among seepage field,deformation field and temperature field within the system of methane-containing coal.In comparison between numerical and analytical solutions,the coupling modeling for THM of methane-containing coal was proved to be correct by model application in the physical simulation experiment of coal and gas outburst.The model established in this paper was the improvement of traditional seepage theory of methane-containing coal and fluid-solid coupled model theory,which can be widely used in prevention of coal and gas outburst as well as exploitation of coal bed methane. 展开更多
关键词 COAL containing METHANE Temperature FIELD seepage FIELD stress FIELD Fluid-solid-heat coupling
下载PDF
Dynamic analysis of spatial parallel manipulator with rigid and flexible couplings 被引量:3
13
作者 LIU Shan-zeng DAI Jian-sheng +4 位作者 SHEN Gang LI Ai-min CAO Guo-hua FENG Shi-zhe MENG De-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期840-853,共14页
The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of be... The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism. 展开更多
关键词 RIGID and flexible couplingS parallel mechanism FINITE ELEMENT FORCE analysis dynamic stress
下载PDF
Stress distribution and its influencing factors of bottom-hole rock in underbalanced drilling 被引量:3
14
作者 ZHANG Ran LI Gen-sheng TIAN Shou-ceng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1766-1773,共8页
The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress... The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly. 展开更多
关键词 thermo-poroelastoplasticity bottom-hole rock stress fully coupled numerical solution fragmentation mechanism
下载PDF
Seepage-stress coupled modeling for rainfall induced loess landslide 被引量:3
15
作者 Danyang Zhou Zhen Zhang +1 位作者 Jiachun Li Xiaoliang Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第1期7-13,I0005,共8页
Although rainfall is rare on the Loess Plateau of western China, landslides occur frequently there in rainy season. Surveys report that landslide hazards always follow heavy rains. In this study, a seepage-stress coup... Although rainfall is rare on the Loess Plateau of western China, landslides occur frequently there in rainy season. Surveys report that landslide hazards always follow heavy rains. In this study, a seepage-stress coupling model for rainfall induced landslide is used to examine an actual disastrous event in Yulin by the end of July, 2017. The effects of rainfall duration, rainfall intensity and soil weakening on slope stability are studied in detail. The results illustrate that the safety factor drops sharply at first and then is gradually declining to below 1.05 during additional two days of heavy rain. With soil strength softening considered, the slope would be more unstable, in which the weakening in soil cohesion is found to be a more sensitive factor. 展开更多
关键词 LOESS Rain INFILTRATION seepage-stress coupling Strength WEAKENING LandSLIDE
下载PDF
Transient thermo-mechanical coupling simulation of wet brake friction disk on tracked vehicle
16
作者 李杰 王敏 +1 位作者 王志勇 周广明 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期71-76,共6页
The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly i... The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs. 展开更多
关键词 friction disk thermo mechanical coupling transient stress finite element heat flowdensity
下载PDF
Sensitivity analysis of pull-in voltage for RF MEMS switch based on modified couple stress theory 被引量:1
17
作者 Junhua ZHU Renhuai LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1555-1568,共14页
An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam an... An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory, and is validated by comparison with the finite element results. The sensitivity functions of the pull-in voltage to the designed parameters are derived based on the proposed model. The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease nonlinearly with the increases in the designed parameters. For the stepped cantilever beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage is insensitive. The optimal value of the dimensionless length ratio only depends on the dimensionless width ratio, and can be obtained by solving a nonlinear equation. The determination of the designed parameters is discussed, and some recommendations are made for the RF MEMS switch optimization. 展开更多
关键词 stepped cantilever beam pull-in voltage modified couple stress theory radio frequency (RF) micro electro-mechanical system (MEMS) switch analytical solution sensitivity analysis
下载PDF
Crustal stress field in Yunnan: implication for crust-mantle coupling 被引量:26
18
作者 Zhigang Xu Zhouchuan Huang +6 位作者 Liangshu Wang Mingjie Xu Zhifeng Ding Pan Wang Ning Mi Dayong Yu Hua Li 《Earthquake Science》 CSCD 2016年第2期105-115,共11页
We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous r... We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere. 展开更多
关键词 TIBET YUNNAN Focal mechanism solution stress field Crust-mantle coupling
下载PDF
Influence of underground water seepage flow on surrounding rock deformation of multi-arch tunnel 被引量:11
19
作者 李夕兵 张伟 +1 位作者 李地元 王其胜 《Journal of Central South University of Technology》 EI 2008年第1期69-74,共6页
Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underg... Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design. 展开更多
关键词 multi-arch tunnel underground water seepage flow coupling flow and stress surrounding rock deformation vault settlement
下载PDF
Peristaltic flow of couple stress fluid through uniform porous medium 被引量:2
20
作者 A.ALSAEDI N.ALI +1 位作者 D.TRIPATHI T.HAYAT 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期469-480,共12页
Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reyno... Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reynolds number. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, and stream function are calculated as a function of couple stress parameter. The essential feature of the analysis is a full description of influence of couple stress parameter and permeability parameter on the pressure, frictional force, mechanical efficiency, and trapping. 展开更多
关键词 PERISTALSIS couple stress fluid porous medium mechanical efficiency trapping
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部