Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is a...Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.展开更多
Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently develo...Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently developed SIMSAND critical state sand model combined with the smoothed particle hydrodynamics(SPH)method is adopted in this work to study slope failure under large deformations.To illustrate the efficiency and accuracy of the SIMSAND-SPH approach,a series of slope collapse studies using the discrete element method(DEM)considering various particle shapes(i.e.spherical,tetrahedral and elongated)is adopted as benchmarks.The parameters of the SIMSAND model are calibrated using DEM triaxial tests.In comparison to the DEM simulations,the runout distance and final slope height are well characterized with the SIMSAND-SPH approach with less computational cost.All comparisons show that the SIMSAND-SPH approach is highly efficient and accurate,which can be an alternative numerical tool to simulate real scale granular flow.展开更多
Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach o...Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.展开更多
A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantag...A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantage of limit equilibrium method. The theoretical relationship between the combination of shear strength parameters and stability state was studied. The results show that the location of critical slip surface, F/tan f and F/c depend only on the value of c/tan f. The failure surface moves towards the inside of slope as c/tan f increases. According to the information involving factor of safety and critical failure surface in a specific cross-section, strength parameters can be back calculated based on the above findings. Three examples were given for demonstrating the validity of the present method. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results.展开更多
In many construction projects,a proactive slope stability evaluation is a prerequisite.Although many deterministic or non-deterministic approaches have been commonly used,metaheuristic approaches have resulted in high...In many construction projects,a proactive slope stability evaluation is a prerequisite.Although many deterministic or non-deterministic approaches have been commonly used,metaheuristic approaches have resulted in high precision and significant outcomes for slope stability analysis problems.The current work focuses on the reliable assessment of critical failure surfaces associated with the least factor of safety value in both homogeneous and non-homogeneous slopes using a new simplified meta-heuristic approach called optics-inspired optimization(OIO).The algorithm utilizes six different LEM methods as a fitness function for deriving the factor of safety.Experimental analysis over three benchmark studies has been performed to demonstrate the algorithm's robustness and effectiveness.The implementation found more robust results as compared to previous studies.Meanwhile,the algorithm's statistical implication is conducted using the ANOVA test,which inferred better outcomes.With this interpretation,the approach claims to be suitable and efficient for slope stability analysis.展开更多
The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this ...The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°.展开更多
The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spen...The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method hich satisfies boty force equilibrium and moment equilibrium.Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope,Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained(CU)triaxial compression tests for compacted Israeli clay.Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors.展开更多
The slope stability of the Itakpe Iron Ore Mine has been carried out using computer software, ROCKPACK III. One hundred and twenty three dip and dip direction values were obtained using compass clinometer. The Itakpe ...The slope stability of the Itakpe Iron Ore Mine has been carried out using computer software, ROCKPACK III. One hundred and twenty three dip and dip direction values were obtained using compass clinometer. The Itakpe Iron Ore Mine was divided into four benches;241 - 258 m, 263 - 275 m, 276 - 286 m and 308 - 312 m. Joints along the discontinuities were mapped. The data obtained were analyzed using ROCKPACK III. The results indicate that the discontinuities within the critical zone are potentially unstable and can lead to planar failure. The Markland test carried out for wedge failure indicates that the intersection of the discontinuities does not fall within the critical zone hence there cannot be any wedge failure of the slope within the level 241 - 258 m. The presence of discontinuities that plot within the toppling critical zone indicates that there is potential toppling failure on the slope at the 276 - 286 m level. In addition, the toppling failure test shows the absence of discontinuities that plot within the toppling critical zone and this indicates the absence of poten-tial toppling failure of the slope at the 308 - 312 m level. The result of the study will be useful to the man-agement of the Itakpe iron ore mine in having a proper understanding of the failure mechanism of the slopes.展开更多
文摘Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.
基金supported by Shenzhen(China)Science and Technology Innovation Committee(Grant Nos.JSGG20180504170449754)supported by Center for Computational Science and Engineering at Southern University of Science and Technology,Shenzhen,China。
文摘Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently developed SIMSAND critical state sand model combined with the smoothed particle hydrodynamics(SPH)method is adopted in this work to study slope failure under large deformations.To illustrate the efficiency and accuracy of the SIMSAND-SPH approach,a series of slope collapse studies using the discrete element method(DEM)considering various particle shapes(i.e.spherical,tetrahedral and elongated)is adopted as benchmarks.The parameters of the SIMSAND model are calibrated using DEM triaxial tests.In comparison to the DEM simulations,the runout distance and final slope height are well characterized with the SIMSAND-SPH approach with less computational cost.All comparisons show that the SIMSAND-SPH approach is highly efficient and accurate,which can be an alternative numerical tool to simulate real scale granular flow.
基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2015CB057901)supported by Basic Research Program of China+4 种基金Projects(51278382,51479050,51508160)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the 111 ProjectProjects(2014B06814,B15020060,2014B33414)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,ChinaProject(KYZZ_0143)supported by the Graduate Education Innovation Project of Jiangsu Province of China
文摘Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.
基金Project(51174228)supported by the National Natural Science Foundation of ChinaProject(CX2012B069)supported by Hunan Provincial Innovation Foundation for PostgraduateProject(201003)supported by Transportation Science and Technology Projects of Hunan Province,China
文摘A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantage of limit equilibrium method. The theoretical relationship between the combination of shear strength parameters and stability state was studied. The results show that the location of critical slip surface, F/tan f and F/c depend only on the value of c/tan f. The failure surface moves towards the inside of slope as c/tan f increases. According to the information involving factor of safety and critical failure surface in a specific cross-section, strength parameters can be back calculated based on the above findings. Three examples were given for demonstrating the validity of the present method. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results.
文摘In many construction projects,a proactive slope stability evaluation is a prerequisite.Although many deterministic or non-deterministic approaches have been commonly used,metaheuristic approaches have resulted in high precision and significant outcomes for slope stability analysis problems.The current work focuses on the reliable assessment of critical failure surfaces associated with the least factor of safety value in both homogeneous and non-homogeneous slopes using a new simplified meta-heuristic approach called optics-inspired optimization(OIO).The algorithm utilizes six different LEM methods as a fitness function for deriving the factor of safety.Experimental analysis over three benchmark studies has been performed to demonstrate the algorithm's robustness and effectiveness.The implementation found more robust results as compared to previous studies.Meanwhile,the algorithm's statistical implication is conducted using the ANOVA test,which inferred better outcomes.With this interpretation,the approach claims to be suitable and efficient for slope stability analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.40872170,40902077,41072196)Doctoral Program Foundation of Higher Education of China(Grant No.20090061110054)+2 种基金Jilin University's 985 Project(Grant No.450070021107)Graduate Innovation Fund of Jilin University(Grant No.20121073)Basic Research of Jilin University(Grant No.421032184424)
文摘The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°.
文摘The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method hich satisfies boty force equilibrium and moment equilibrium.Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope,Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained(CU)triaxial compression tests for compacted Israeli clay.Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors.
文摘The slope stability of the Itakpe Iron Ore Mine has been carried out using computer software, ROCKPACK III. One hundred and twenty three dip and dip direction values were obtained using compass clinometer. The Itakpe Iron Ore Mine was divided into four benches;241 - 258 m, 263 - 275 m, 276 - 286 m and 308 - 312 m. Joints along the discontinuities were mapped. The data obtained were analyzed using ROCKPACK III. The results indicate that the discontinuities within the critical zone are potentially unstable and can lead to planar failure. The Markland test carried out for wedge failure indicates that the intersection of the discontinuities does not fall within the critical zone hence there cannot be any wedge failure of the slope within the level 241 - 258 m. The presence of discontinuities that plot within the toppling critical zone indicates that there is potential toppling failure on the slope at the 276 - 286 m level. In addition, the toppling failure test shows the absence of discontinuities that plot within the toppling critical zone and this indicates the absence of poten-tial toppling failure of the slope at the 308 - 312 m level. The result of the study will be useful to the man-agement of the Itakpe iron ore mine in having a proper understanding of the failure mechanism of the slopes.