Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometr...Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometry inspection equipment for highspeed comprehensive inspection train in China in the past 20 years can be divided into 3 stages.Track geometry inspection equipment 1.0 is the stage of analog signal.At the stage 1.0,the first priority is to meet the China’s railways basic needs of pre-operation joint debugging,safety assessment and daily dynamic inspection,maintenance and repair after operation.Track geometry inspection equipment 2.0 is the stage of digital signal.At the stage 2.0,it is important to improve stability and reliability of track geometry inspection equipment by upgrading the hardware sensors and improving software architecture.Track geometry inspection equipment 3.0 is the stage of lightweight.At the stage 3.0,miniaturization,low power consumption,self-running and green economy are co-developing on demand.Findings–The ability of track geometry inspection equipment for high-speed comprehensive inspection train will be expanded.The dynamic inspection of track stiffness changes will be studied under loaded and unloaded conditions in response to the track local settlement,track plate detachment and cushion plate failure.The dynamic measurement method of rail surface slope and vertical curve radius will be proposed,to reveal the changes in railway profile parameters of high-speed railways and the relationship between railway profile,track irregularity and subsidence of subgrade and bridges.The 200 m cut-off wavelength of track regularity will be researched to adapt to the operating speed of 400 km/h.Originality/value–The research can provide new connotations and requirements of track geometry inspection equipment for high-speed comprehensive inspection train in the new railway stage.展开更多
The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution...The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution lines,variable morphology of equipment,and large differences in equipment sizes.Therefore,aiming at the difficult detection of power equipment in UAV inspection images,we propose a multi-equipment detection method for inspection of distribution lines based on the YOLOx-s.Based on the YOLOx-s network,we make the following improvements:1)The Receptive Field Block(RFB)module is added after the shallow feature layer of the backbone network to expand the receptive field of the network.2)The Coordinate Attention(CA)module is added to obtain the spatial direction information of the targets and improve the accuracy of target localization.3)After the first fusion of features in the Path Aggregation Network(PANet),the Adaptively Spatial Feature Fusion(ASFF)module is added to achieve efficient re-fusion of multi-scale deep and shallow feature maps by assigning adaptive weight parameters to features at different scales.4)The loss function Binary Cross Entropy(BCE)Loss in YOLOx-s is replaced by Focal Loss to alleviate the difficulty of network convergence caused by the imbalance between positive and negative samples of small-sized targets.The experiments take a private dataset consisting of four types of power equipment:Transformers,Isolators,Drop Fuses,and Lightning Arrestors.On average,the mean Average Precision(mAP)of the proposed method can reach 93.64%,an increase of 3.27%.The experimental results show that the proposed method can better identify multiple types of power equipment of different scales at the same time,which helps to improve the intelligence of UAV autonomous inspection in distribution lines.展开更多
Due to the limited management funds and insufficient management efforts,curing barns in traditional tobacco area are outdated and equipments are seriously damaged,which affects the normal operation and increases the m...Due to the limited management funds and insufficient management efforts,curing barns in traditional tobacco area are outdated and equipments are seriously damaged,which affects the normal operation and increases the maintenance cost of bulk curing barns,bringing adverse effects on tobacco leaf curing in the coming year and the sustainable development of tobacco industry in the future.To ensure the normal operation of curing barns and effectively prolong the service life of curing barns during tobacco leaf curing,we should do a good job in the publicity of management and maintenance,improve the system of management and maintenance,raise funds for management and maintenance,inspect facilities and equipments,carefully maintain equipments in curing barn and strictly perform examination and inspection.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52278465)Science and Technology Research and Development Plan of China Railway(Grant No.N2022G051)Key Project of China Academy of Railway Sciences(Grant No.2351JJ2401).
文摘Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometry inspection equipment for highspeed comprehensive inspection train in China in the past 20 years can be divided into 3 stages.Track geometry inspection equipment 1.0 is the stage of analog signal.At the stage 1.0,the first priority is to meet the China’s railways basic needs of pre-operation joint debugging,safety assessment and daily dynamic inspection,maintenance and repair after operation.Track geometry inspection equipment 2.0 is the stage of digital signal.At the stage 2.0,it is important to improve stability and reliability of track geometry inspection equipment by upgrading the hardware sensors and improving software architecture.Track geometry inspection equipment 3.0 is the stage of lightweight.At the stage 3.0,miniaturization,low power consumption,self-running and green economy are co-developing on demand.Findings–The ability of track geometry inspection equipment for high-speed comprehensive inspection train will be expanded.The dynamic inspection of track stiffness changes will be studied under loaded and unloaded conditions in response to the track local settlement,track plate detachment and cushion plate failure.The dynamic measurement method of rail surface slope and vertical curve radius will be proposed,to reveal the changes in railway profile parameters of high-speed railways and the relationship between railway profile,track irregularity and subsidence of subgrade and bridges.The 200 m cut-off wavelength of track regularity will be researched to adapt to the operating speed of 400 km/h.Originality/value–The research can provide new connotations and requirements of track geometry inspection equipment for high-speed comprehensive inspection train in the new railway stage.
基金supported by the National Natural Science Foundation of China under Grants 62362040,61662033supported by the Science and Technology Project of the State Grid Jiangxi Electric Power Co.,Ltd.of China under Grant 521820210006.
文摘The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution lines,variable morphology of equipment,and large differences in equipment sizes.Therefore,aiming at the difficult detection of power equipment in UAV inspection images,we propose a multi-equipment detection method for inspection of distribution lines based on the YOLOx-s.Based on the YOLOx-s network,we make the following improvements:1)The Receptive Field Block(RFB)module is added after the shallow feature layer of the backbone network to expand the receptive field of the network.2)The Coordinate Attention(CA)module is added to obtain the spatial direction information of the targets and improve the accuracy of target localization.3)After the first fusion of features in the Path Aggregation Network(PANet),the Adaptively Spatial Feature Fusion(ASFF)module is added to achieve efficient re-fusion of multi-scale deep and shallow feature maps by assigning adaptive weight parameters to features at different scales.4)The loss function Binary Cross Entropy(BCE)Loss in YOLOx-s is replaced by Focal Loss to alleviate the difficulty of network convergence caused by the imbalance between positive and negative samples of small-sized targets.The experiments take a private dataset consisting of four types of power equipment:Transformers,Isolators,Drop Fuses,and Lightning Arrestors.On average,the mean Average Precision(mAP)of the proposed method can reach 93.64%,an increase of 3.27%.The experimental results show that the proposed method can better identify multiple types of power equipment of different scales at the same time,which helps to improve the intelligence of UAV autonomous inspection in distribution lines.
文摘Due to the limited management funds and insufficient management efforts,curing barns in traditional tobacco area are outdated and equipments are seriously damaged,which affects the normal operation and increases the maintenance cost of bulk curing barns,bringing adverse effects on tobacco leaf curing in the coming year and the sustainable development of tobacco industry in the future.To ensure the normal operation of curing barns and effectively prolong the service life of curing barns during tobacco leaf curing,we should do a good job in the publicity of management and maintenance,improve the system of management and maintenance,raise funds for management and maintenance,inspect facilities and equipments,carefully maintain equipments in curing barn and strictly perform examination and inspection.