期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Mechanism of gas pressure action during the initial failure of coal containing gas and its application for an outburst inoculation 被引量:1
1
作者 Chaojie Wang Lutan Liu +2 位作者 Xiaowei Li Changhang Xu Kai Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1511-1525,共15页
Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear ... Faced with the continuous occurrence of coal and gas outburst(hereinafter referred to as“outburst”)disasters,as a main controlling factor in the evolution process of an outburst,for gas pressure,it is still unclear about the phased characteristics of the coupling process with in situ stress,which induce coal damage and instability.Therefore,in the work based on the mining stress paths induced by typical outburst accidents,the gradual and sudden change of three-dimensional stress is taken as the background for the mechanical reconstruction of the disaster process.Then the true triaxial physical experiments are conducted on the damage and instability of coal containing gas under multiple stress paths.Finally,the response characterization between coal damage and gas pressure has been clarified,revealing the mechanism of action of gas pressure during the initial failure of coals.And the main controlling mechanism during the outburst process is elucidated in the coupling process of in situ stress with gas pressure.The results show that during the process of stress loading and unloading,the original gas pressure enters the processes of strengthening and weakening the action ability successively.And the strengthening effect continues to the period of large-scale destruction of coals.The mechanical process of gas pressure during the initial failure of coals can be divided into three stages:the enhancement of strengthening action ability,the decrease of strengthening action ability,and the weakening action ability.The entire process is implemented by changing the dominant action of in situ stress into the dominant action of gas pressure.The failure strength of coals is not only affected by its original mechanical strength,but also by the stress loading and unloading paths,showing a particularly significant effect.Three stages can be divided during outburst inoculation process.That is,firstly,the coals suffer from initial damage through the dominant action of in situ stress with synergy of gas pressure;secondly,the coals with spallation of structural division are generated through the dominant action of gas pressure with synergy of in situ stress,accompanied by further fragmentation;and finally,the fractured coals suffer from fragmentation and pulverization with the gas pressure action.Accordingly,the final broken coals are ejected out with the gas action,initiating an outburst.The research results can provide a new perspective for deepening the understanding of coal and gas outburst mechanism,laying a theoretical foundation for the innovation of outburst prevention and control technologies. 展开更多
关键词 coal and gas outburst outburst mechanism Main controlling mechanism coal damage Mining stress Dilatation phenomenon
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:3
2
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 coal and gas outburst gas pressure Dynamic load outburst mechanism
下载PDF
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions 被引量:1
3
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 coal and gas outburst Geo-dynamic system Stress–damage–seepage coupling Elimination mechanism Instability criterion gas extraction
下载PDF
In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management
4
作者 Zhongbei Li Ting Ren +4 位作者 Dennis Black Ming Qiao Itmam Abedin Jessica Juric Mike Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期34-46,共13页
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative... The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations. 展开更多
关键词 In-situ coal seam gas content Direct desorption method gas component Sorption capacity coal and gas outburst
下载PDF
Dynamic behavior of outburst two-phase flow in a coal mine T-shaped roadway:The formation of impact airflow and its disaster-causing effect
5
作者 Liang Cheng Jiang Xu +4 位作者 Shoujian Peng Hailin Yang Feng Jiao Bin Zhou Fazhi Yan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1001-1017,共17页
The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway... The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity. 展开更多
关键词 Multiphase flow coal and gas outburst Dynamic disaster Impact airflow T-shaped bifurcated roadway coal seam
下载PDF
Application of the catastrophe progression method in predicting coal and gas outburst 被引量:18
6
作者 ZHANG Tian-jun REN Shu-xin +2 位作者 LI Shu-gang ZHANG Tian-cai XU Hong-jie 《Mining Science and Technology》 EI CAS 2009年第4期430-434,共5页
Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensi... Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines. 展开更多
关键词 standard transformation catastrophe progression method coal and gas outburst
下载PDF
Coal and gas outburst mechanism of the “Three Soft” coal seam in western Henan 被引量:10
7
作者 LEI DongJi LI Chengwu +1 位作者 ZHANG Zimin ZHANG Yugui 《Mining Science and Technology》 EI CAS 2010年第5期712-717,共6页
Based on the particularities of gas outbursts,i.e.,low gas bearing capacity and low gas pressure in the "Three Soft" coal seam in western Henan,we applied the theories of plate tectonics and regional structu... Based on the particularities of gas outbursts,i.e.,low gas bearing capacity and low gas pressure in the "Three Soft" coal seam in western Henan,we applied the theories of plate tectonics and regional structural evolution to investigate the mechanism of this seam and its impact on the coal seam gas formation.Our investigation revealed that coal and gas outbursts are distributed in a strip in a NW direction,with a number of high-penetration mines scattered towards the south side and low-gas mines largely located on the north side.We analyzed the statistics of 38 gas explosions and the rock-coal sturdiness number coefficient f of 167 sampling sites in the region and found the gas outburst mechanism that features a "low indicator outburst phenomenon".The mechanism is characterized by structural coal as its core,a low gas bearing capacity,low gas pressure and sturdiness coefficient f mostly less than 0.3.Our research results provide a theoretical foundation for effective control of gas disasters. 展开更多
关键词 coal and gas outburst mechanism investigation THRESHOLD sliding structure
下载PDF
Catastrophic mechanism of coal and gas outbursts and their prevention and control 被引量:10
8
作者 LI, Shugang ZHANG, Tianjun 《Mining Science and Technology》 EI CAS 2010年第2期209-214,共6页
Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical... Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented. 展开更多
关键词 coal and gas outbursts catastrophe theory INSTABILITY
下载PDF
Coal damage mechanism in the developing process of coal and gas outburst 被引量:7
9
作者 JIN Hong-wei HU Qian-ting LIANG Yun-pei 《Journal of Coal Science & Engineering(China)》 2009年第2期138-142,共5页
Based on the damage analysis of elliptical aperture,the mechanism of coal damagein the developing process of coal and gas outburst was researched.The results show thatthe damage to coal by gas is mainly caused by the ... Based on the damage analysis of elliptical aperture,the mechanism of coal damagein the developing process of coal and gas outburst was researched.The results show thatthe damage to coal by gas is mainly caused by the concentrated tensile stress appearing nearthe endpoint of the pores.Fractures in coal,gas pressure,ground stress and the tensilestrength of the coal matrix are the major controlling factors of this kind of damage.When theground stress releases abruptly and the gas pressure is high,tensile failure will occur aroundthe endpoint of the small pores due to gas pressure,and the coal may be broken up like powder;this is called pulverization.Otherwise,when the gas pressure is low,the tensile stress canonly occur around the endpoint of the large pores and fractures due to gas pressure,the fracturesin coal extend and link together,the fracture extension direction is statistically perpendicularto the direction of the minor principal stress.This kind of damage is shown as the stratifiedspall around the outburst hole. 展开更多
关键词 coal and gas outburst DEVELOPMENT coal damage fracture extend
下载PDF
Determination of indices and critical values of gas parameters of the first gas outburst in a coal seam of the Xieqiao Mine 被引量:4
10
作者 Ou Jianchun Liu Mingju +2 位作者 Zhang Chunru Liu Yanwei Wei Jianping 《International Journal of Mining Science and Technology》 2012年第1期89-93,共5页
Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical v... Based on the important role in mine safety played by parameters of the first gas outburst, we propose a method of combining historic data, theoretical analysis and experimental research for the purpose of crit- ical values of gas parameters of the first gas outburst in a coal seam of the Xieqiao Mine. According to a characteristic analysis and a summary of the rules of coal and gas outbursts in the No.8 coal seam of a Hua- inan mine, we have investigated their effect on coal and gas outbursts in terms such as ground stress, gas, and coal structure. We have selected gas parameters and determined the critical values of each of the fol- lowing indices: gas content as 7.7 m^3/t, tectonic coal as 0.8 m thick, the absolute gas emission as 2 m3/min, the rate of change as 0.7 m3/min, the gas desorption index of a drilling chip KI as 0.26 mL/(g min^1/2) and the values of desorption indexes Ah2 as 200 Pa. From a verification of the production, the results indicate that application of each index and their critical values significantly improve the level of safety in the pro- duction process, relieve the burden upon the mine, save much labor and bring clear economic benefits. 展开更多
关键词 Parameters of first gas outburst gas content Thickness of tectonic coal Critical value coal and gas outbursts
下载PDF
RHEOLOGICAL HYPOTHESIS OF COAL AND GAS OUTBURST MECHANISM 被引量:7
11
作者 何学秋 周世宁 《Journal of China University of Mining and Technology》 1994年第1期15-23,共9页
The existing bypotheses of coal and gas outburst mechanism are all based on the elasticity mechanies. Since they have not taken time factor into eonsideration, these hypotheses can not give a satisfactory explanation ... The existing bypotheses of coal and gas outburst mechanism are all based on the elasticity mechanies. Since they have not taken time factor into eonsideration, these hypotheses can not give a satisfactory explanation of the oceurrence and development of the outburst. A creep mathematital model of gas-contaming coal,which can better expdri the phenomenon of coal and methane outbursts,has been set up through creep tests and analyses under the condition of triaxiai compression.The tests have proved that there isn’ t essential difference between the rheological properties of outburst prone coal and non-outburst prone coal. Outburst can happen in any kind of coal if the rheologicai conditions exist. The creep mathematital model provides a soild foundation for establlshing a comprebcnsive criterion of coal and gas outburst. 展开更多
关键词 RHEOLOGY coal and gas outburst MECHANISM
下载PDF
Study on the propagation law of shock wave resulting from coal and gas outburst 被引量:2
12
作者 WANG Kai ZHOU Ai-tao +2 位作者 ZHANG Pin LI Chuan GUO Yan-wei 《Journal of Coal Science & Engineering(China)》 2011年第2期142-146,共5页
According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordi... According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis. 展开更多
关键词 coal and gas outburst shock wave OVERPRESSURE gas flow velocity outburst intensity
下载PDF
Regression analysis of major parameters affecting the intensity of coal and gas outbursts in laboratory 被引量:7
13
作者 Geng Jiabo Xu Jiang +3 位作者 Nie Wen Peng Shoujian Zhang Chaolin Luo Xiaohang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期327-332,共6页
Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coa... Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091). 展开更多
关键词 coal and gas outburst gas pressure Regression analysis ANOVA CTA
下载PDF
Study of the features of outburst caused by rock cross-cut coal uncovering and the law of gas dilatation energy release 被引量:6
14
作者 Yu Baohai Su Chengxiang Wang Deming 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期453-458,共6页
To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the ... To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst. 展开更多
关键词 Rock cross-cut coal uncovering gas dilatation energy Numerical calculation coal and gas outburst
下载PDF
Prediction method for risks of coal and gas outbursts based on spatial chaos theory using gas desorption index of drill cuttings 被引量:5
15
作者 Li Dingqi Cheng Yuanping +3 位作者 Wang Lei Wang Haifeng Wang Liang Zhou Hongxing 《Mining Science and Technology》 EI CAS 2011年第3期439-443,共5页
Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. ... Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications. 展开更多
关键词 Chaos theory Spatial series coal and gas outburst prediction gas desorption index of drill cuttings
下载PDF
STUDY ON THE METHOD FOR FORECASTING DANGEROUSNESS OF COAL FACE AND HEADING FACE OUTBURST BY TWO TEMPERATURE INDEXES 被引量:1
16
作者 王宏图 鲜学福 +1 位作者 魏福生 戴小平 《Journal of Coal Science & Engineering(China)》 1998年第2期42-47,共6页
In line with the sensitivity of coal drillings temperature and coalbed temperature to the dangerous zone of coal and gas outburst, two temperature sensitive indexes (△Tm, △tm) for forecasting dangerousness of coal f... In line with the sensitivity of coal drillings temperature and coalbed temperature to the dangerous zone of coal and gas outburst, two temperature sensitive indexes (△Tm, △tm) for forecasting dangerousness of coal face and heading face outburst are defined, and deal with the foundation on drillings and coalbed temperatures used as sensitive indexes and the principle and method of determining drillings and coalbed temperatures. On the basis of this, we put forward the method for forecasting dangerousness of coal face and heading face outburst by two temperature sensitive indexes and determine the critical values of two temperature sensitive indexes (△Tm= 5.5℃, △tm = 4.5℃) by in-situ observation and requirement for determining sensitive index. 展开更多
关键词 drillings temperature coalbed temperature coal and gas outburst outburst gerousness forecasting
下载PDF
Pattern recognition prediction of coal and gas outburst hazard in the sixth mine of Hebi 被引量:1
17
作者 张宏伟 宋卫华 +1 位作者 杨恒 张明杰 《Journal of Coal Science & Engineering(China)》 2008年第2期248-251,共4页
Based on the systematical analysis influence factors of coal and gas outburst, the main factors and their magnitude was determined by the corresponding methods.With the research region divided into finite predicting u... Based on the systematical analysis influence factors of coal and gas outburst, the main factors and their magnitude was determined by the corresponding methods.With the research region divided into finite predicting units,the internal relation between the factors and the hazard of coal and gas outburst,that was combination model of influence factors,was ascertained through multi-factor pattern recognition method.On the basis of contrastive analysis the pattern of coal and gas outburst between prediction region and mined region,the hazard of every predication unit was determined.The mining area was then divided into coal and gas outburst dangerous area,threaten area and safe area re- spectively according to the hazard of every predication unit.Accordingly the hazard of mining area is assessed. 展开更多
关键词 coal and gas outburst multi-factor prediction units pattern recognition probability prediction
下载PDF
A Fluid-Structure Interaction Simulation of Coal and Gas Outbursts Based on the Interaction between the Gas Pressure and Deformation of a Coal-Rock Mass
18
作者 Lin Fang Mengjun Wu +3 位作者 Bin Wu Honglin Li Chenhao He Fan Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1649-1668,共20页
Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a flu... Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a fluidstructure interaction model for the interaction between coal gas and coal-rock masses.The outburst process in coal-rock masses under the joint action of gas pressure and crustal stress is simulated using the material point method.The simulation results show the changes in gas pressure,velocity distribution,maximum principal stress distribution,and damage distribution during the process of the coal and gas outburst,as well as themovement and accumulation of coal-rock masses after the occurrence of the outburst.It was found that the gas pressure gradient was greatest at theworking face after the occurrence of the outburst,the gas pressures and pressure gradients at each location within the coal seamgradually decreased with time,and the damage distribution was essentially the same as the minimum principal stress distribution.The simulation further revealed that the outburst first occurred in themiddle of the tunnel excavation face and that the speed at which particles of coal mass were ejected was highest at the center and decreased toward the upper and lower sides.The study provides a scientific basis for enhancing our understanding of the mechanism behind coal and gas outbursts,as well as their prevention and control. 展开更多
关键词 coal and gas outburst fluid-structure interaction model material point method numerical simulation
下载PDF
Study on the formation mechanism of shock wave in process of coal and gas outburst
19
作者 SUN Dong-ling MIAO Fa-tian LIANG Yun-pei 《Journal of Coal Science & Engineering(China)》 2009年第2期134-137,共4页
According to the research results of motion parameters of coal-gas flow,analyzedthe formation mechanism of shock waves at different states of coal-gas flow in theprocess of coal and gas outburst,and briefly described ... According to the research results of motion parameters of coal-gas flow,analyzedthe formation mechanism of shock waves at different states of coal-gas flow in theprocess of coal and gas outburst,and briefly described the two possible cases of outburstshock wave formation and their formation conditions in the process of coal and gas out-burst,and then pointed out that a high degree of under-expanded coal-gas flow was themain reason for the formation of a highly destructive shock wave.The research resultsimproved the shock wave theory in coal and gas outburst. 展开更多
关键词 coal and gas outburst coal-gas flow outlet pressure shock wave
下载PDF
Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas 被引量:36
20
作者 Yuanping Cheng Liang Wang +3 位作者 Hongyong Liu Shengli Kong Jintuo Zhu Qingyi Tu 《International Journal of Coal Science & Technology》 EI 2015年第1期52-65,共14页
Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the... Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the main coal-producing countries around the world. However, the concrete definition of simultaneous extraction is vague and there is little accurate theoretical support for the simultaneous extraction of coal and gas, which makes it difficult to determine an efficient gas drainage method appropriate to the features of coal seams. Based on theoretical analysis, laboratory tests and field observations, a specific definition of simultaneous extraction of coal and gas is proposed after analyzing the characteristics of coal seam occurrences in China, and we developed the mechanism of mining-enhanced permeability and established the corresponding theoretical model. This comprises a process of fracture network formation, in which the original fractures are opened and new fractures are produced by unloading damage. According to the theoretical model, the engineering approaches and their quantitative parameters of 'unloading by borehole drilling' for single coal seams and 'unloading by protective seam mining' for groups of coal seams are proposed, and the construction principles for coal exploitation and gas-drainage systems for different conditions are given. These methods were applied successfully in the Tunlan Coal Mine in Shanxi Province and the Panyi Coal Mine in Anhui Province and could assure safe and efficient simultaneous extraction of coal and gas in these outburst coal mines. 展开更多
关键词 coal seam gas outburst coal seam Mining-enhanced permeability Simultaneous extraction of coal and gas
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部