Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water reg...Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water regime of soil and connected with the growth of plant, the study combined the moisture percentage of soil with PF to research in quantity the interrelation between the moisture percentage and PF in different succession phases of subalpine dark coniferous forest in Gongga Mountain. The results showed that: (1) In the same PF value, the moisture percentage in humus horizon increased gradually with the devel-opment of the succession of the dark coniferous forest; The moisture percentage of over-mature forest was the highest and>mature forest>half-mature forest>young growth forest; (2) With the increase of soil depth, the soil bulk density increased and the moisture percentage decreased, but the difference in the percentage of moisture was not notable in different succession phases. (3) In different succession series, the vegetation affected the soil water characteristics by increasing the soil organic matter, improving the soil construction, receding the soil bulk density and enhancing the soil porosity; (4) The humus horizon of the dark coniferous forest soil has the highest water holding capability in this region.展开更多
We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers K...We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers KNO3 and KBr to the self-made soil column equipment in different ways to examine density and volume changes of inflows and outflows of a mass input (impulse input) and a stable, well-distributed input (step input)). The results showed that this dark coniferous forest ecosystem of Gongga Mountain is a typical area of preferential flow and solute preferential transport, a process that can be classified into five parts. A great amount of solute was transported at high speed as the result of preferential flow in the soil and caused the density of the solute in both deep water and in groundwater to rise rapidly, which definitely increased pollution in the deep soil layer.展开更多
Mudflow is the principal disturbance in Abies fabri forests. In the Gongga Mountain areas of the upper reaches of the Yangtze River, the intensities and periodicity of different scale mudflows vary. Small-scale mudflo...Mudflow is the principal disturbance in Abies fabri forests. In the Gongga Mountain areas of the upper reaches of the Yangtze River, the intensities and periodicity of different scale mudflows vary. Small-scale mudflows are more frequent, occurring every one or two years while large-scale mudflows may occur once in more than one hundred years. Through a field study of A.fabri forests during different stages of growth, we analyzed their structural characteristics and discovered that after different sizes of mudflow, poplar and birch often occupy the dominant canopy at the expense of the slow growing A. fabri, for only a small number of saplings are A. fabri that occurs in the first regeneration stage. However, a large number of seed resources can be found in mature A. fabri forests and as a unique regeneration species, A. fabri will gradually replace all the other species and form a stable community of strong shade-tolerant trees. Because of the intimate relationship between growing conditions and soil and water conservation at the upper reaches of the Yangtze River, we should carry out some artificial measurements to control and promote the slow regeneration process ofA. fabri.展开更多
The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri fores...The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri forest in the Gongga Mountain from May 1998 to September 1999. The results indicate the following: (i) The forest soil serves as the source of atmospheric N2O at the three measurement sites, while the fluxes of CH4 are all negative, and soil is the sink of atmospheric CH4. The comparative relations of N2O emissions between the three sites are expressed as primeval Abies fabri forest > clear-cut areas > succession Abies fabri forest, and those of CH4 consumption fluxes are primeval Abies fabri forest > succession Abies fabri forest > clear-cut areas. (ii) Signifi-cant seasonal variations of N2O emission at various sites were observed, and two emission peaks of N2O occurr during summer (July—August) and spring (February—March), whereas N2O emission is relatively low in winter and spring (mid March—April). Seasonal variations of CH4 consumption at each measurement site fluctuate drastically with unclear regularities. Generally, CH4 consumption fluxes of succession Abies fabri forest and clear-cut areas are higher from mid May to late July but lower in the rest of sampling time, while the CH4 flux keeps a relatively high value even up to Sep-tember in primeval Abies fabri forest. In contrast to primeval Abies fabri forest, the CH4 absorbabili-ties of succession Abies fabri forest and clear-cut areas of mid-aged Abies fabri forest are weaker. Particularly, the absorbability of the clear-cut areas is even weaker as compared with the other two sites, for the deforestation reduces the soil absorbability of atmospheric CH4. (iii) Evident diurnal variation regularity exists in the N2O emissions of primeval Abies fabri forest, and there is a statistic positive correlation between the fluxes of N2O and air temperature (R=0.95, n=11, <0.01), and also the soil temperature of 5-cm layer (R=0.81, n=11, < 0.01), whereas the CH4 diurnal variation regularities are unclear and have no significant correlation with the soil temperature of 5-cm layer and air temperature.展开更多
The storage and chemical properties of the forest litter in dark coniferous forest of Sejila Mountain were studied. The results showed that the existing storage was 5.863t·hm -2 and the annual litter fall was 0.3...The storage and chemical properties of the forest litter in dark coniferous forest of Sejila Mountain were studied. The results showed that the existing storage was 5.863t·hm -2 and the annual litter fall was 0.3205 t·hm -2 . It implied that the forest litter decomposed slowly and accumulated quickly, and the turnover of nutrient circles was slow. The contents of N, Ca, Na, and Mn nutrient elements in litter layer were in the order of un-decomposed layer (U layer) abstract > semi-decomposed layer (S layer) abstract > decomposed layer (D layer) abstract, those of K, Fe, and Mg were in the order of D layer > S layer > U layer, and P element content was in the order of U layer > D layer > S layer. The pool of elements was 78.483 kg·hm -2 N, 3.843 kg·hm -2 P, 48.205 kg·hm -2 K, 23.115 kg·hm -2 Ca, 13.157 kg·hm -2 Na, 30.554 kg·hm -2 Fe, 2.113 kg·hm -2 Mn and 27.513 kg·hm -2 Mg. The turnover of forest litter was the total of nutrient release accumulation. K, Fe, and Mg were enriched, and N, Ca, Na, Mn, and P were released with the turnover rate in the order of N > Ca > Na > Mn >P.展开更多
基金The Development Plan of the State Key Fundamental Research of China (973), contract No. 2000046807 and by Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-405)
文摘Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water regime of soil and connected with the growth of plant, the study combined the moisture percentage of soil with PF to research in quantity the interrelation between the moisture percentage and PF in different succession phases of subalpine dark coniferous forest in Gongga Mountain. The results showed that: (1) In the same PF value, the moisture percentage in humus horizon increased gradually with the devel-opment of the succession of the dark coniferous forest; The moisture percentage of over-mature forest was the highest and>mature forest>half-mature forest>young growth forest; (2) With the increase of soil depth, the soil bulk density increased and the moisture percentage decreased, but the difference in the percentage of moisture was not notable in different succession phases. (3) In different succession series, the vegetation affected the soil water characteristics by increasing the soil organic matter, improving the soil construction, receding the soil bulk density and enhancing the soil porosity; (4) The humus horizon of the dark coniferous forest soil has the highest water holding capability in this region.
基金the financial support provided by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060022006)National Natural Sciences Foundation of China (Grant No. 30471379)
文摘We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers KNO3 and KBr to the self-made soil column equipment in different ways to examine density and volume changes of inflows and outflows of a mass input (impulse input) and a stable, well-distributed input (step input)). The results showed that this dark coniferous forest ecosystem of Gongga Mountain is a typical area of preferential flow and solute preferential transport, a process that can be classified into five parts. A great amount of solute was transported at high speed as the result of preferential flow in the soil and caused the density of the solute in both deep water and in groundwater to rise rapidly, which definitely increased pollution in the deep soil layer.
文摘Mudflow is the principal disturbance in Abies fabri forests. In the Gongga Mountain areas of the upper reaches of the Yangtze River, the intensities and periodicity of different scale mudflows vary. Small-scale mudflows are more frequent, occurring every one or two years while large-scale mudflows may occur once in more than one hundred years. Through a field study of A.fabri forests during different stages of growth, we analyzed their structural characteristics and discovered that after different sizes of mudflow, poplar and birch often occupy the dominant canopy at the expense of the slow growing A. fabri, for only a small number of saplings are A. fabri that occurs in the first regeneration stage. However, a large number of seed resources can be found in mature A. fabri forests and as a unique regeneration species, A. fabri will gradually replace all the other species and form a stable community of strong shade-tolerant trees. Because of the intimate relationship between growing conditions and soil and water conservation at the upper reaches of the Yangtze River, we should carry out some artificial measurements to control and promote the slow regeneration process ofA. fabri.
基金This work was supported by the National Natural Sciences Foundation of China (Grant No. 49971005) and the Key Innovational Program of Chinese Academy of Sciences (Grant No. KZCX1-SW-01-04) together with the Innovational Project of the Institute of Geogra
文摘The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri forest in the Gongga Mountain from May 1998 to September 1999. The results indicate the following: (i) The forest soil serves as the source of atmospheric N2O at the three measurement sites, while the fluxes of CH4 are all negative, and soil is the sink of atmospheric CH4. The comparative relations of N2O emissions between the three sites are expressed as primeval Abies fabri forest > clear-cut areas > succession Abies fabri forest, and those of CH4 consumption fluxes are primeval Abies fabri forest > succession Abies fabri forest > clear-cut areas. (ii) Signifi-cant seasonal variations of N2O emission at various sites were observed, and two emission peaks of N2O occurr during summer (July—August) and spring (February—March), whereas N2O emission is relatively low in winter and spring (mid March—April). Seasonal variations of CH4 consumption at each measurement site fluctuate drastically with unclear regularities. Generally, CH4 consumption fluxes of succession Abies fabri forest and clear-cut areas are higher from mid May to late July but lower in the rest of sampling time, while the CH4 flux keeps a relatively high value even up to Sep-tember in primeval Abies fabri forest. In contrast to primeval Abies fabri forest, the CH4 absorbabili-ties of succession Abies fabri forest and clear-cut areas of mid-aged Abies fabri forest are weaker. Particularly, the absorbability of the clear-cut areas is even weaker as compared with the other two sites, for the deforestation reduces the soil absorbability of atmospheric CH4. (iii) Evident diurnal variation regularity exists in the N2O emissions of primeval Abies fabri forest, and there is a statistic positive correlation between the fluxes of N2O and air temperature (R=0.95, n=11, <0.01), and also the soil temperature of 5-cm layer (R=0.81, n=11, < 0.01), whereas the CH4 diurnal variation regularities are unclear and have no significant correlation with the soil temperature of 5-cm layer and air temperature.
文摘The storage and chemical properties of the forest litter in dark coniferous forest of Sejila Mountain were studied. The results showed that the existing storage was 5.863t·hm -2 and the annual litter fall was 0.3205 t·hm -2 . It implied that the forest litter decomposed slowly and accumulated quickly, and the turnover of nutrient circles was slow. The contents of N, Ca, Na, and Mn nutrient elements in litter layer were in the order of un-decomposed layer (U layer) abstract > semi-decomposed layer (S layer) abstract > decomposed layer (D layer) abstract, those of K, Fe, and Mg were in the order of D layer > S layer > U layer, and P element content was in the order of U layer > D layer > S layer. The pool of elements was 78.483 kg·hm -2 N, 3.843 kg·hm -2 P, 48.205 kg·hm -2 K, 23.115 kg·hm -2 Ca, 13.157 kg·hm -2 Na, 30.554 kg·hm -2 Fe, 2.113 kg·hm -2 Mn and 27.513 kg·hm -2 Mg. The turnover of forest litter was the total of nutrient release accumulation. K, Fe, and Mg were enriched, and N, Ca, Na, Mn, and P were released with the turnover rate in the order of N > Ca > Na > Mn >P.