Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che...Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.展开更多
Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density a...Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.展开更多
Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in...Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.展开更多
Solvents are generally used to reduce the viscosity of heavy crude oil and ultimately enhance oil recovery.Recently,a new method has been introduced where nanoparticles(NPs)are exploited to induce enhanced oil recover...Solvents are generally used to reduce the viscosity of heavy crude oil and ultimately enhance oil recovery.Recently,a new method has been introduced where nanoparticles(NPs)are exploited to induce enhanced oil recovery owing to their ability to improve the mobility ratio,dampen the interfacial tension,and alter rock wett-ability.This study investigated the integration of nano-alumina(Al_(2)O_(3))NPs with an n-hexane solvent.In parti-cular,a Brookfield viscometer has been used to measure the crude oil viscosity and it has been found that NPs can effectively lead to a significant decrease in the overall oil viscosity(70 cp using the solvent only,45 cp when NPs are added).展开更多
Extraction of castor oil from castor seeds was investigated using different green solvents which include d-limonene, p-cymene, α-pinene, ethanol, and furfural at the temperature range of (323 - 413) K. The Soxhlet ex...Extraction of castor oil from castor seeds was investigated using different green solvents which include d-limonene, p-cymene, α-pinene, ethanol, and furfural at the temperature range of (323 - 413) K. The Soxhlet extraction method was employed to investigate the effect of temperature at atmospheric pressure. The focus of the study was to investigate a potential green solvent that can produce the high yields compared to the traditional solvent (hexane). The results show that at the average time of 3 hours and 30 minutes, the castor oil yield for green solvents were ranked as furfural (47.13%) > ethanol (45.37%) > p-cymene (39.15%) > d-limonene (39.13%) > α-pinene (38.11%). These castor oil yields were obtained at optimum temperatures for each green solvent. The castor oil yields were compared to the yield of hexane (31.36%) at same average time. The green solvents were recovered by using simple distillation, except furfural which was difficult to be recovered.展开更多
The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin wer...The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.展开更多
This study was aimed at evaluating the physicochemical properties and oxidation stability of castor oil using microwave-assisted solvent extraction(MAE). MAE was performed using 5% ethanol in hexane as solvent at diff...This study was aimed at evaluating the physicochemical properties and oxidation stability of castor oil using microwave-assisted solvent extraction(MAE). MAE was performed using 5% ethanol in hexane as solvent at different extraction times, power intensities and solvent-to-feed(S/F, ml of solvent to gram of feed) ratios.The process parameters were optimized by statistical approach using historical data design of response surface method(RSM). The oils were characterized for yield, physicochemical properties, dielectric properties and oxidation stability, and comparison was also made with oil extracted using Soxhlet method. Results show that the maximum oil yield of 37% was obtained at 20 min with microwave power intensity of 330 W and S/F ratio of 20. The main fatty acid composition of castor oil is ricinoleic acid. The density, refractive index, dielectric properties and oxidation stability of oils are not affected by the extraction methods and extraction parameters of MAE. However, the MAE-extracted oil is more viscous compared to that by Soxhlet method. With extra caution on oil oxidation, MAE could be a promising solvent extraction method with an 86% less in processing time and a higher yield.展开更多
In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction fr...In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction from oily sludge. The oil recovery increased by approximately 15% compared with that of solvent extraction without [Bmmim][PF6] at the optimal ratios of IL to sludge and solvents to sludge, which were at 2:5(M/M) and 4:1(V/M), respectively. The saturate, aromatic, resin and asphaltene(SARA) analysis revealed that the recovery of resins and asphaltenes was increased by 14% and 38%, respectively, in the solvent extraction with the addition of [Bmmim][PF6]. [Bmmim][PF6] maintained a good performance after its reuse four times. The addition of[Bmmim][PF6] changed the adhesion forces between oil and soil. The IL-assisted solvent extraction procedure followed the pseudo second-order kinetic model, while the unassisted solvent extraction procedure followed the pseudo first-order kinetic model. The results also demonstrated that [Bmmim][PF6] decreased the solvent consumption by approximately 60% each time. Additionally, [Bmmim][PF6] can be easily separated. The results suggested that enhancing the solvent extraction with this IL is a promising way to recover oil from oily sludge with a higher oil recovery rate and lower organic solvent consumption than those with the unassisted solvent extraction method.展开更多
To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furf...To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.展开更多
A novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture(SM)(64 mol%CH4,8 mol%CO2,and 28 mol%C3 H8)with heavy oil.Then,a theoretical methodology was employed to estimate the p...A novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture(SM)(64 mol%CH4,8 mol%CO2,and 28 mol%C3 H8)with heavy oil.Then,a theoretical methodology was employed to estimate the phase behavior of the heavy oil-solvent mixture(HO-SM)systems with various mole fractions of SM.The experimental results show that as the mole fraction of SM increases,the saturation pressures and swelling factors of the HO-SM systems considerably increase,and the viscosities and densities of the HO-SM systems decrease.The heavy oil is upgraded in situ via asphaltene precipitation and SM dissolution.Therefore,the solvent-enriched oil phase at the top layer of reservoirs can easily be produced from the reservoir.The aforementioned results indicate that the SM has promising application potential for enhanced heavy oil recovery via solvent-based processes.The theoretical methodology can accurately predict the saturation pressures,swelling factors,and densities of HO-SM systems with various mole fractions of SM,with average error percentages of1.77%for saturation pressures,0.07%for swelling factors,and 0.07%for densities.展开更多
A new method of upgrading 6# solvent oils using different ionic liquids as catalysts in a continuous apparatus is studied in this paper.The results show that aromatics, olefins and small quantity of sulfurs can be rem...A new method of upgrading 6# solvent oils using different ionic liquids as catalysts in a continuous apparatus is studied in this paper.The results show that aromatics, olefins and small quantity of sulfurs can be removed simultaneously. Using complex ionic liquid modified with CuCl as catalyst, oletins are removed completely,the mass concentrations of aromatics and sulfurs in solvent oil are 0.36% and 0.0058%, respectively, and the bromic index is zero. The sulfur removal rate decreases gradually with increasing of rtmning time. The refined 6# solvent oil is corresponded to the quality standards of GB 16629-1996, which request that the mass concentrations of aromatics, sulfurs and bromic index are 1%, 0.012% and 1000, respectively. The loss of solvent oil is less than 3%.展开更多
Biodiesel, which is a renewable and environmentally friendly fuel, has been studied widely to help remedy increasing environmental problems. One of the key processes of biodiesel production is oil extraction from oils...Biodiesel, which is a renewable and environmentally friendly fuel, has been studied widely to help remedy increasing environmental problems. One of the key processes of biodiesel production is oil extraction from oilseed materials. Switchable solvents can reversibly change from molecular to ionic solvents under atmospheric CO_2,and can be used for oil extraction. N, N-dimethylcyclohexylamine(DMCHA), a switchable solvent, was used to extract oil from Jatropha curcas L. oil seeds to produce biodiesel. The appropriate extraction conditions were:1:2 ratio of seed mass to DMCHA volume, 0.3–1 mm particle size, 200 r·min-1agitation speed, 60 min extraction time, and 30 °C extraction temperature. The extraction ratio was about 83%. This solvent extracted the oil more efficiently than hexane, and is much less volatile. By bubbling CO_2 under 1 atm and 25 °C for 5 h, the oil was separated, and DMCHA was recovered after releasing CO_2 by bubbling N_2 under 1 atm and 60 °C for 2 h. The residual solvent content in oil was about 1.7%. Selectivity of DMCHA was evaluated by detecting the protein and sugar content in oil. Using the oil with residual solvent to conduct transesterification process, the oil conversion ratio was approximately 99.5%.展开更多
In the present work, the effect of solvent on the extraction of the organic matter from Quseir’s oil shales was studied. The experimental results revealed that the extraction yield obtained by the tetrahydrofuran was...In the present work, the effect of solvent on the extraction of the organic matter from Quseir’s oil shales was studied. The experimental results revealed that the extraction yield obtained by the tetrahydrofuran was very high compared to other solvents. In addition, the solvent had a significant effect on the yield and the composition of the obtained oil. The analysis carried out on the extracted oil showed that the tetrahydrofuran was a very efficient solvent for oil shale extraction, giving a better quality of the oils extracted containing a large proportion of aromatics compounds and fewer amounts of sulphur and paraffin compounds.展开更多
The extraction of the organic matter (OM) from oil shale (OS) can be achieved by several processing techniques. Normally, these techniques can remove high proportion of the organic material contained in oil shale. In ...The extraction of the organic matter (OM) from oil shale (OS) can be achieved by several processing techniques. Normally, these techniques can remove high proportion of the organic material contained in oil shale. In this work, organic solvents extraction experiments were implemented to investigate the effect of various parameters on Jordanian El-Lajjun oil shale extractability. Results indicate that the approximate organic matter content in studied El-Lajjun oil shale is 17.48%, and 75% of OS sample particles diameters are less than 270 μm. The grain size has minor effect on shale oil extraction via organic solvents. Among eleven solvents used, the highest yield is obtained via the tetrahedrofuran (THF), whereas, with the use of solvent mixtures, the highest bitumen yield is obtained through the mixture of THF and toluene. The solvation variability is related to mode of extraction and various physicochemical factors such as extraction temperature, pressure, solvent type and mixing time, which result in different OM yield. The results indicate that the solvent extraction could be potential for shale oil extraction from Jordanian El-Lajjun OS under certain conditions of temperature, pressure and solvent type used.展开更多
A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane....A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane.The performance of resultant O-PAN nanofiber membrane was optimized by altering the PAN concentration and preoxidation temperature.The results showed that the O-PAN nanofiber membrane which made from PAN concentration of 14%(mass)and preoxidation temperature of 250.0℃ have a more optimal comprehensive performance.In the long-term separation test of SiO2 particle(1 μm)in DMAc suspension,the permeate flux of O-PAN nanofiber membrane stabilized at 227.91 L·m^(-2)·h^(-1)(25℃,0.05 MPa)while the SiO2 rejection above 99.6%,which showed excellent solvent resistance and separation performance.In order to further explore the application of the O-PAN nanofiber membrane,the OPAN nanofiber membrane was treated with fluoride and used in oil/water separation process.The O-PAN nanofiber membrane after hydrophobic treatment showed excellent hydrophobicity and good oil/water separation performance with the permeate flux about 969.59 L·m^(-2)·h^(-1)while the separation efficiency above 96.1%.The O-PAN nanofiber membrane exhibited a potential application prospect in harsh environment separation.展开更多
Biofuels became more promising alternative to the fossil fuels because of the depletion of fossil resources, renewability, environmental benefits, and energy security. Ethanolysis of waste cooking oil with hexane as c...Biofuels became more promising alternative to the fossil fuels because of the depletion of fossil resources, renewability, environmental benefits, and energy security. Ethanolysis of waste cooking oil with hexane as co-solvent was carried out for the production of fatty acid ethyl ester (FAEE). This process reduced the severity of process parameters with high purity biodiesel yield. Process variables such as co-solvent ratio, ethanol to oil molar ratio, reaction temperature and reaction time were optimized. The maximum biodiesel yield of 88% was obtained at ethanol/oil molar ratio of 40:1, co-solvent (hexane) to oil ratio of 0.2% (v/v), reaction temperature of 300°C in 20 min of reaction time. Fatty acid ethyl ester (biodiesel) samples produced from this process were measured and evaluated using GC-MS analytical instrument. Thermo gravimetric analysis (TGA) was also performed to examine the thermal stability of waste cooking oil, ethyl esters and fuel blends. Fuel properties of ethyl esters were determined and compared with the ASTM standards for biodiesel, regular diesel and ethyl esters from different feedstock.展开更多
The present work presents a first characterization of the oil from the Moringa (Moringa oleifera) kernel as a potential candidate for biodiesel production. Moringa is an indigenous tree in the Yucatan Peninsula in Mex...The present work presents a first characterization of the oil from the Moringa (Moringa oleifera) kernel as a potential candidate for biodiesel production. Moringa is an indigenous tree in the Yucatan Peninsula in Mexico, where there is a nascent biodiesel industry. Several extraction methods are compared in terms of the extraction yields, including solvent extraction (n-hexane and ethanol), and supercritical extraction (Sc-CO2). The results are also compared against previ- ously reported data. For supercritical extraction pressures of 200 to 400 bar and temperatures of 40℃ and 60℃ were tested. Gas Chromatography analysis reveals that the main fatty acids in Moringa oil are oleic acid (69%), palmitic acid (10%), and stearic acid (8%).展开更多
Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil s...Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil sands were compared.Furthermore,the Hansen solubility combination parameter(HSCP)and Teas triangle were used to explore rules in the separation of oil sands bitumen via solvent extraction.Finally,the saturates,aromatics,resins,and asphaltenes(SARA)fractions of the bitumen from Indonesian oil sands were analyzed.The results showed that the Indonesian oil sands were oil-wet with a bitumen content of 24.93%.The solvent extraction for bitumen could be accurately and conveniently selected based on the solubility parameter.When the HSPs of the extraction solvent were around 18–19 and the HSCPs were closer to a certain range(δ_(d)=17.5–18.0,δ_(p)=1–3.5,and δ_(h)=2–6),the extraction effect of bitumen from Indonesian oil sands improved,and the primary component affecting the extraction rate of bitumen were asphaltenes.展开更多
The two-step catalyzing process for biodiesel production from waste vegetable oil was assisted by both co-solvent and microwave irradiation. Central composite design (CCD) was employed to optimize the reaction conditi...The two-step catalyzing process for biodiesel production from waste vegetable oil was assisted by both co-solvent and microwave irradiation. Central composite design (CCD) was employed to optimize the reaction conditions. Optimal reaction conditions of the first step were alcohol to oil molar ratio of 9:1, catalyst (H2SO4) amount 1 wt%, reaction temperature 333 K, and reaction time 7.5 minutes;while for the second step, optimal reaction conditions were alcohol to oil molar ratio 12:1, catalyst (NaOH) amount 1 wt%, reaction temperature 333 K, and reaction time 2.0 minutes. The total reaction time was 9.5 min and the conversion rate of fatty acid methyl esters (FAMEs) achieved was 97.4%. The total reaction time was shorter than previous studies. Therefore, the co-solvent and microwave assisted two-step catalyzing process has a potential application in producing biodiesel from waste vegetable oil.展开更多
This study focuses on investigating the effect of various solvents on the supercritical extraction of organic matter from Moroccan oil shales, with the goal of determining the optimal operating conditions that result ...This study focuses on investigating the effect of various solvents on the supercritical extraction of organic matter from Moroccan oil shales, with the goal of determining the optimal operating conditions that result in a high yield of high-quality oil rich in aromatic compounds. The results of this study demonstrate that the extraction yield and quality of the extracted oil heavily depend on the chosen operating conditions for supercritical or subcritical extraction of organic matter from oil shale. Additionally, the study found that phenol can effectively degrade oil shale and enable extraction of nearly all the organic matter, even under mild conditions (T = 390˚C, P = 1.2 MPa, Time = 2.5 h. Furthermore, the oils obtained through this extraction process are of high quality, with a rich content of maltenes, and a higher concentration of aromatic compounds and lower levels of sulfur than those obtained using other solvents.展开更多
基金financially supported by Shanxi Province Natural Science Foundation of China(20210302123167)NSFC-Shanxi joint fund for coal-based low carbon(U1610223)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-TD006).
文摘Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.
文摘Solvents are generally used to reduce the viscosity of heavy crude oil and ultimately enhance oil recovery.Recently,a new method has been introduced where nanoparticles(NPs)are exploited to induce enhanced oil recovery owing to their ability to improve the mobility ratio,dampen the interfacial tension,and alter rock wett-ability.This study investigated the integration of nano-alumina(Al_(2)O_(3))NPs with an n-hexane solvent.In parti-cular,a Brookfield viscometer has been used to measure the crude oil viscosity and it has been found that NPs can effectively lead to a significant decrease in the overall oil viscosity(70 cp using the solvent only,45 cp when NPs are added).
文摘Extraction of castor oil from castor seeds was investigated using different green solvents which include d-limonene, p-cymene, α-pinene, ethanol, and furfural at the temperature range of (323 - 413) K. The Soxhlet extraction method was employed to investigate the effect of temperature at atmospheric pressure. The focus of the study was to investigate a potential green solvent that can produce the high yields compared to the traditional solvent (hexane). The results show that at the average time of 3 hours and 30 minutes, the castor oil yield for green solvents were ranked as furfural (47.13%) > ethanol (45.37%) > p-cymene (39.15%) > d-limonene (39.13%) > α-pinene (38.11%). These castor oil yields were obtained at optimum temperatures for each green solvent. The castor oil yields were compared to the yield of hexane (31.36%) at same average time. The green solvents were recovered by using simple distillation, except furfural which was difficult to be recovered.
基金This work was financially supported by the National Natural Science Foundation of China(41972123,41922015)the Natural Science Foundation of Shandong Province(ZR2020QD036).
文摘The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.
基金Supported by Universiti Teknologi Malaysia through 415 Flagship(Grant No.03G70)
文摘This study was aimed at evaluating the physicochemical properties and oxidation stability of castor oil using microwave-assisted solvent extraction(MAE). MAE was performed using 5% ethanol in hexane as solvent at different extraction times, power intensities and solvent-to-feed(S/F, ml of solvent to gram of feed) ratios.The process parameters were optimized by statistical approach using historical data design of response surface method(RSM). The oils were characterized for yield, physicochemical properties, dielectric properties and oxidation stability, and comparison was also made with oil extracted using Soxhlet method. Results show that the maximum oil yield of 37% was obtained at 20 min with microwave power intensity of 330 W and S/F ratio of 20. The main fatty acid composition of castor oil is ricinoleic acid. The density, refractive index, dielectric properties and oxidation stability of oils are not affected by the extraction methods and extraction parameters of MAE. However, the MAE-extracted oil is more viscous compared to that by Soxhlet method. With extra caution on oil oxidation, MAE could be a promising solvent extraction method with an 86% less in processing time and a higher yield.
基金financial support from the National Natural Science Foundation of China(Nos.41807133 and 41977142)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.18K05ESPCT)the Fundamental Research Funds for the Central Universities(PT1915)。
文摘In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction from oily sludge. The oil recovery increased by approximately 15% compared with that of solvent extraction without [Bmmim][PF6] at the optimal ratios of IL to sludge and solvents to sludge, which were at 2:5(M/M) and 4:1(V/M), respectively. The saturate, aromatic, resin and asphaltene(SARA) analysis revealed that the recovery of resins and asphaltenes was increased by 14% and 38%, respectively, in the solvent extraction with the addition of [Bmmim][PF6]. [Bmmim][PF6] maintained a good performance after its reuse four times. The addition of[Bmmim][PF6] changed the adhesion forces between oil and soil. The IL-assisted solvent extraction procedure followed the pseudo second-order kinetic model, while the unassisted solvent extraction procedure followed the pseudo first-order kinetic model. The results also demonstrated that [Bmmim][PF6] decreased the solvent consumption by approximately 60% each time. Additionally, [Bmmim][PF6] can be easily separated. The results suggested that enhancing the solvent extraction with this IL is a promising way to recover oil from oily sludge with a higher oil recovery rate and lower organic solvent consumption than those with the unassisted solvent extraction method.
文摘To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.
基金financially supported by the National Natural Science Foundation of China(No.51604293)the Shandong Provincial Natural Science Foundation,China(No.ZR2016EEB30)+3 种基金the Fundamental Research Funds for the Central Universities(No.17CX02009A)the Qingdao Applied Basic Research Program(Source Innovation)(No.17-1-1-32-jch)the Scientific Research Foundation of China University of Petroleum for Talent Introduction(No.YJ201601093)the National Science and Technology Major Project(2016ZX05031-002)。
文摘A novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture(SM)(64 mol%CH4,8 mol%CO2,and 28 mol%C3 H8)with heavy oil.Then,a theoretical methodology was employed to estimate the phase behavior of the heavy oil-solvent mixture(HO-SM)systems with various mole fractions of SM.The experimental results show that as the mole fraction of SM increases,the saturation pressures and swelling factors of the HO-SM systems considerably increase,and the viscosities and densities of the HO-SM systems decrease.The heavy oil is upgraded in situ via asphaltene precipitation and SM dissolution.Therefore,the solvent-enriched oil phase at the top layer of reservoirs can easily be produced from the reservoir.The aforementioned results indicate that the SM has promising application potential for enhanced heavy oil recovery via solvent-based processes.The theoretical methodology can accurately predict the saturation pressures,swelling factors,and densities of HO-SM systems with various mole fractions of SM,with average error percentages of1.77%for saturation pressures,0.07%for swelling factors,and 0.07%for densities.
基金Supported by the National Natural Science Foundation of China (20676150), the Natural Science Foundation of Beijing (2052010), and the Science and Technology Venture Foundation of the Petro China Company Limited (2005[68]).
文摘A new method of upgrading 6# solvent oils using different ionic liquids as catalysts in a continuous apparatus is studied in this paper.The results show that aromatics, olefins and small quantity of sulfurs can be removed simultaneously. Using complex ionic liquid modified with CuCl as catalyst, oletins are removed completely,the mass concentrations of aromatics and sulfurs in solvent oil are 0.36% and 0.0058%, respectively, and the bromic index is zero. The sulfur removal rate decreases gradually with increasing of rtmning time. The refined 6# solvent oil is corresponded to the quality standards of GB 16629-1996, which request that the mass concentrations of aromatics, sulfurs and bromic index are 1%, 0.012% and 1000, respectively. The loss of solvent oil is less than 3%.
基金Supported by Doctoral Fund of Ministry of Education of China(20130181130006)the National Natural Science Foundation of China(No.21476150)
文摘Biodiesel, which is a renewable and environmentally friendly fuel, has been studied widely to help remedy increasing environmental problems. One of the key processes of biodiesel production is oil extraction from oilseed materials. Switchable solvents can reversibly change from molecular to ionic solvents under atmospheric CO_2,and can be used for oil extraction. N, N-dimethylcyclohexylamine(DMCHA), a switchable solvent, was used to extract oil from Jatropha curcas L. oil seeds to produce biodiesel. The appropriate extraction conditions were:1:2 ratio of seed mass to DMCHA volume, 0.3–1 mm particle size, 200 r·min-1agitation speed, 60 min extraction time, and 30 °C extraction temperature. The extraction ratio was about 83%. This solvent extracted the oil more efficiently than hexane, and is much less volatile. By bubbling CO_2 under 1 atm and 25 °C for 5 h, the oil was separated, and DMCHA was recovered after releasing CO_2 by bubbling N_2 under 1 atm and 60 °C for 2 h. The residual solvent content in oil was about 1.7%. Selectivity of DMCHA was evaluated by detecting the protein and sugar content in oil. Using the oil with residual solvent to conduct transesterification process, the oil conversion ratio was approximately 99.5%.
文摘In the present work, the effect of solvent on the extraction of the organic matter from Quseir’s oil shales was studied. The experimental results revealed that the extraction yield obtained by the tetrahydrofuran was very high compared to other solvents. In addition, the solvent had a significant effect on the yield and the composition of the obtained oil. The analysis carried out on the extracted oil showed that the tetrahydrofuran was a very efficient solvent for oil shale extraction, giving a better quality of the oils extracted containing a large proportion of aromatics compounds and fewer amounts of sulphur and paraffin compounds.
文摘The extraction of the organic matter (OM) from oil shale (OS) can be achieved by several processing techniques. Normally, these techniques can remove high proportion of the organic material contained in oil shale. In this work, organic solvents extraction experiments were implemented to investigate the effect of various parameters on Jordanian El-Lajjun oil shale extractability. Results indicate that the approximate organic matter content in studied El-Lajjun oil shale is 17.48%, and 75% of OS sample particles diameters are less than 270 μm. The grain size has minor effect on shale oil extraction via organic solvents. Among eleven solvents used, the highest yield is obtained via the tetrahedrofuran (THF), whereas, with the use of solvent mixtures, the highest bitumen yield is obtained through the mixture of THF and toluene. The solvation variability is related to mode of extraction and various physicochemical factors such as extraction temperature, pressure, solvent type and mixing time, which result in different OM yield. The results indicate that the solvent extraction could be potential for shale oil extraction from Jordanian El-Lajjun OS under certain conditions of temperature, pressure and solvent type used.
基金supported by the Science and Technology Plans of Tianjin(18PTSYJC00170)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS20160168)The Analytical&Testing Center of Tiangong University was appreciated.
文摘A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane.The performance of resultant O-PAN nanofiber membrane was optimized by altering the PAN concentration and preoxidation temperature.The results showed that the O-PAN nanofiber membrane which made from PAN concentration of 14%(mass)and preoxidation temperature of 250.0℃ have a more optimal comprehensive performance.In the long-term separation test of SiO2 particle(1 μm)in DMAc suspension,the permeate flux of O-PAN nanofiber membrane stabilized at 227.91 L·m^(-2)·h^(-1)(25℃,0.05 MPa)while the SiO2 rejection above 99.6%,which showed excellent solvent resistance and separation performance.In order to further explore the application of the O-PAN nanofiber membrane,the OPAN nanofiber membrane was treated with fluoride and used in oil/water separation process.The O-PAN nanofiber membrane after hydrophobic treatment showed excellent hydrophobicity and good oil/water separation performance with the permeate flux about 969.59 L·m^(-2)·h^(-1)while the separation efficiency above 96.1%.The O-PAN nanofiber membrane exhibited a potential application prospect in harsh environment separation.
文摘Biofuels became more promising alternative to the fossil fuels because of the depletion of fossil resources, renewability, environmental benefits, and energy security. Ethanolysis of waste cooking oil with hexane as co-solvent was carried out for the production of fatty acid ethyl ester (FAEE). This process reduced the severity of process parameters with high purity biodiesel yield. Process variables such as co-solvent ratio, ethanol to oil molar ratio, reaction temperature and reaction time were optimized. The maximum biodiesel yield of 88% was obtained at ethanol/oil molar ratio of 40:1, co-solvent (hexane) to oil ratio of 0.2% (v/v), reaction temperature of 300°C in 20 min of reaction time. Fatty acid ethyl ester (biodiesel) samples produced from this process were measured and evaluated using GC-MS analytical instrument. Thermo gravimetric analysis (TGA) was also performed to examine the thermal stability of waste cooking oil, ethyl esters and fuel blends. Fuel properties of ethyl esters were determined and compared with the ASTM standards for biodiesel, regular diesel and ethyl esters from different feedstock.
文摘The present work presents a first characterization of the oil from the Moringa (Moringa oleifera) kernel as a potential candidate for biodiesel production. Moringa is an indigenous tree in the Yucatan Peninsula in Mexico, where there is a nascent biodiesel industry. Several extraction methods are compared in terms of the extraction yields, including solvent extraction (n-hexane and ethanol), and supercritical extraction (Sc-CO2). The results are also compared against previ- ously reported data. For supercritical extraction pressures of 200 to 400 bar and temperatures of 40℃ and 60℃ were tested. Gas Chromatography analysis reveals that the main fatty acids in Moringa oil are oleic acid (69%), palmitic acid (10%), and stearic acid (8%).
基金supported by the Natural Science Foundation of Jiangsu Province(Grant number:BK20140260)Joint Project of Industry-University-Research of Jiangsu Province(Grant number:BY2018158,BY2021590)State Key Laboratory of Heavy Oil Processing.
文摘Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil sands were compared.Furthermore,the Hansen solubility combination parameter(HSCP)and Teas triangle were used to explore rules in the separation of oil sands bitumen via solvent extraction.Finally,the saturates,aromatics,resins,and asphaltenes(SARA)fractions of the bitumen from Indonesian oil sands were analyzed.The results showed that the Indonesian oil sands were oil-wet with a bitumen content of 24.93%.The solvent extraction for bitumen could be accurately and conveniently selected based on the solubility parameter.When the HSPs of the extraction solvent were around 18–19 and the HSCPs were closer to a certain range(δ_(d)=17.5–18.0,δ_(p)=1–3.5,and δ_(h)=2–6),the extraction effect of bitumen from Indonesian oil sands improved,and the primary component affecting the extraction rate of bitumen were asphaltenes.
文摘The two-step catalyzing process for biodiesel production from waste vegetable oil was assisted by both co-solvent and microwave irradiation. Central composite design (CCD) was employed to optimize the reaction conditions. Optimal reaction conditions of the first step were alcohol to oil molar ratio of 9:1, catalyst (H2SO4) amount 1 wt%, reaction temperature 333 K, and reaction time 7.5 minutes;while for the second step, optimal reaction conditions were alcohol to oil molar ratio 12:1, catalyst (NaOH) amount 1 wt%, reaction temperature 333 K, and reaction time 2.0 minutes. The total reaction time was 9.5 min and the conversion rate of fatty acid methyl esters (FAMEs) achieved was 97.4%. The total reaction time was shorter than previous studies. Therefore, the co-solvent and microwave assisted two-step catalyzing process has a potential application in producing biodiesel from waste vegetable oil.
文摘This study focuses on investigating the effect of various solvents on the supercritical extraction of organic matter from Moroccan oil shales, with the goal of determining the optimal operating conditions that result in a high yield of high-quality oil rich in aromatic compounds. The results of this study demonstrate that the extraction yield and quality of the extracted oil heavily depend on the chosen operating conditions for supercritical or subcritical extraction of organic matter from oil shale. Additionally, the study found that phenol can effectively degrade oil shale and enable extraction of nearly all the organic matter, even under mild conditions (T = 390˚C, P = 1.2 MPa, Time = 2.5 h. Furthermore, the oils obtained through this extraction process are of high quality, with a rich content of maltenes, and a higher concentration of aromatic compounds and lower levels of sulfur than those obtained using other solvents.