Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,develo...Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,developed by our Institute of Seismology using a new methodological approach for Kazakhstan.The article is about creating the first normative map of the Detailed Seismic Zoning on a probabilistic foundation for the Republic of Kazakhstan’s East Kazakhstan region.We carried out the probabilistic assessment of seismic hazard using a methodology consistent with the main provisions of Eurocode 8and updated compared with that used in developing maps of Kazakhstan’s General Seismic Zoning and seismic microzoning of Almaty.The most thorough and current data accessible for the area under consideration were combined with contemporary analytical techniques.Updates have been done to not only the databases being used but also the way seismic sources were shown,including active faults now.On a scale of 1:1000000,precise seismic zoning maps of the East Kazakhstan region were created for two probabilities of exceedance:10%and 2%in 50 years in terms of peak ground accelerations and macroseismic intensities.The obtained seismic hazard distribution is generally consistent with the General Seismic Zoning of Kazakhstan’s previous findings.However,because active faults were included and a thoroughly revised catalog was used,there are more pronounced zones of increased danger along the fault in the western part of the region.In the west of the territory,acceleration values also increased due to a more accurate consideration of seismotectonic conditions.Zoning maps are the basis for developing new state building regulations of the Republic of Kazakhstan.展开更多
The eastern Himalayan syntaxis is one of the most tectonically active and earthquake-prone regions on Earth where earthquake-induced geological disasters occur frequently and caused great damages. With the planning an...The eastern Himalayan syntaxis is one of the most tectonically active and earthquake-prone regions on Earth where earthquake-induced geological disasters occur frequently and caused great damages. With the planning and construction of Sichuan-Tibet highway, Sichuan-Tibet railway and hydropower development on the Yarlung Zangbo River etc. in recent years, it is very important to evaluate the seismic landslide hazard of this region. In this paper, a seismic landslide hazard map is produced based on seismic geological background analysis and field investigation using Newmark method with 10% PGA exceedance probabilities in future 50 years by considering the influence of river erosion, active faults and seismic amplification for the first time. The results show that the areas prone to seismic landslides are distributed on steep slopes along the drainages and the glacier horns as well as ridges on the mountains. The seismic landslide hazard map produced in this study not only predicts the most prone seismic landslide areas in the future 50 years but also provides a reference for mitigation strategies to reduce the exposure of the new building and planning projects to seismic landslides.展开更多
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment...As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.展开更多
The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic ...The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic belt in the future. Reliable seismic hazard assessment is a critical element in development of policy for seismic hazard mitigation and risk reduction. In this study, we conduct probabilistic seismic hazard assessment using three different seismogenic source models(smoothed gridded, linear, and areal sources)based on the complicated tectonics of the study area. Two sets of ground motion prediction equations are combined in a standard logic tree by taking into account the epistemic uncertainties in hazard estimation. Long-term slip rates and paleoseismic records are also incorporated in the linear source model. Peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s for 2% and 10%probabilities of exceedance in 50 years are estimated. The resulting maps show significant spatial variation in seismic hazard levels. The region of the Lesser Himalaya is found to have high seismic hazard potential. Along the Main Himalayan Thrust from east to west beneath the Main Central Thrust, large earthquakes have occurred regularly in history; hazard values in this region are found to be higher than those shown on existing hazard maps. In essence, the combination of long span earthquake catalogs and multiple seismogenic source models gives improved seismic hazard constraints in Nepal.展开更多
The new method for determining ground-motion parameters in the Indonesian Earthquake Resistant Building Code SNI (Indonesia National Standard) 03-1726-2012 has significant changes than the previous code. The maps of...The new method for determining ground-motion parameters in the Indonesian Earthquake Resistant Building Code SNI (Indonesia National Standard) 03-1726-2012 has significant changes than the previous code. The maps of mean and modal of magnitude and distance presented here are intended to convey information about the distribution ofprobabilistic seismic sources and to provide prescriptions or suggestions for seismic sources to use in developing artificial ground motion in building design or retrofit projects. This paper presents deaggregation of Indonesia Seismic Hazard Map 2010 for Sumatra. Deaggregation for 0.2-s and 1.0-s pseudo SA (spectral acceleration) is performed for 10% PE (probability of exceedance) in 50 years (475-year mean return period) and 2% PE in 50 years (2,475-year mean return period). The information of deaggregation analysis can and perhaps should be considered in a complex seismic-resistant design decision-making environment.展开更多
Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situati...Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situations are very complex and thus uncertainties of some parameters such as water content conditions and critical displacement are difficult to describe with accurate mathematical models. In this study, we present a probabilistic methodology based on the probabilistic seismic hazard analysis method and the Newmark’s displacement model. The Tianshui seismic zone(105°00′-106°00′ E, 34°20′-34°40′ N) in the northeastern Tibetan Plateau were used as an example. Arias intensity with three standard probabilities of exceedance(63%, 10%, and 2% in 50 years) in accordance with building design provisions were used to compute Newmark displacements by incorporating the effects of topographic amplification.Probable scenarios of water content condition were considered and three water content conditions(dry,wet and saturated) were adopted to simulate the effect of pore-water on slope. The influence of 5 cm and 10 cm critical displacements were investigated in order to analyze the sensitivity of critical displacement to the probabilities of earthquake-induced landslide occurrence. The results show that water content in particular, have a great influence on the distribution of high seismic landslide hazard areas. Generally, the dry coverage analysis represents a lower bound for susceptibility and hazard assessment, and the saturated coverage analysis represents an upper bound to some extent. Moreover, high seismic landslide hazard areas are also influenced by the critical displacements. The slope failure probabilities during future earthquakes with critical displacements of 5 cm can increase by a factor of 1.2 to 2.3 as compared to that of 10 cm. It suggests that more efforts are required in order to obtain reasonable threshold values for slope failure. Considering the probable scenarios of water content condition which is varied with seasons, seismic landslide hazard assessments are carried out for frequent, occasional and rare earthquake occurrences in the Tianshui region, which can provide a valuable reference for landslide hazard management and infrastructure design in mountainous seismic zones.展开更多
The site of Mansehra is located seismically in an active regime, known as the Crystalline Nappe Zone and Hazara-Kashmir Syntaxis in NW Himalayas, Pakistan. Seismic Hazard Assessment (SHA) for the site has been carri...The site of Mansehra is located seismically in an active regime, known as the Crystalline Nappe Zone and Hazara-Kashmir Syntaxis in NW Himalayas, Pakistan. Seismic Hazard Assessment (SHA) for the site has been carried out by considering the earthquake source zones, selection of appropriate attenuation equations, near fault effects and maximum potential magnitude estimation. The Mansehra Thrust, Oghi Fault, Banna Thrust, Balakot Shear Zone, Main Boundary Thrust, Panjal Thrust, Jhelum Fault and Muzaffarabad Fault and, further to the south, the Sanghargali, Nathiagali, and Thandiani Thrusts are the most critical tectonic features within the 50 km radius of Mansehra. Using the available instrumental seismological data from 1904 to 2007, SHA has been carried out. Other reactivated critical tectonic features in the area have been investigated. Among them the Balakot-Bagh fault, with the fault length of 120 km from Balakot to Poonch, has been considered as the most critical tectonic feature on the basis of geological/structural/seismological data. The potential earthquake of maximum magnitude 7.8 has been assigned to the Balakot-Bagh fault using four regression relations. The peak ground acceleration value of 0.25 g (10% probability of exceedance for 50 years) and 0.5 g has been calculated with the help of the attenuation equation using probabilistic and deterministic approaches.展开更多
Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is e...Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is estimated that in the scenario of activation of the North Tehran fault, many structures in Tehran will collapse. Therefore, it is necessary to incorporate the near field rupture directivity effects of this fault into the seismic hazard assessment of important sites in Tehran. In this study, using calculations coded in MATLAB, Probabilistic Seismic Hazard Analysis (PSHA) is conducted for an important site in Tehran. Following that, deaggregation technique is performed on PSHA and the contribution of seis- mic scenarios to hazard is obtained in the range of distance and magnitude. After identifying the North Tehran fault as the most hazardous source affecting the site in 10000-year return period, rupture directivity effects of this fault is incorporated into the seismic hazard assessment using Somerville et al. (1997) model with broadband approach and Shahi and Baker (2011) model with narrowband approach. The results show that the narrowband approach caused a 27% increase in the peak of response spectrum in 10000-year return period compared with the conventional PSHA. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.展开更多
Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may h...Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may have great influence upon the seismic hazard of a site which is near the source. Under this circumstance, it is unreasonable to use the simplified potential source models in the PSHA, so a potential rupture surface model is proposed in this paper. Adopting this model, we analyze the seismic hazard near the Chelungpu fault that generated the Chi-Chi (Jiji) earthquake with magnitude 7.6 and the following conclusions are reached. (1) This model is reasonable on the base of focal mechanism, especially for sites near potential earthquakes with large magnitude; (2) The attitudes of potential rupture surfaces have great influence on the results of probabilistic seismic hazard analysis and seismic zoning.展开更多
-Conventional Probabilistic Seismic Hazard Analysis(PSHA) is difficult to apply in regions lacking sufficient information of the geological setting,active faults,and so forth.Also,for a site-specific PSHA,site effects...-Conventional Probabilistic Seismic Hazard Analysis(PSHA) is difficult to apply in regions lacking sufficient information of the geological setting,active faults,and so forth.Also,for a site-specific PSHA,site effects arising from both crustal rock and overlying soil sediments are generally not assessed rigorously.This is of particular importance for those metropolitan cities having a significant proportion of reclaimed land,because the site-to-site variability of such site effects can be very large.The objective of this paper is to demonstrate an alternative procedure for constructing site-specific uniform hazard response spectra(UHS),extended from a recently-developed Direct Amplitude-Based(DAB) approach.The method has a number of important advantages compared with conventional PSHA.Using the proposed approach,response spectral values have been computed for the whole period range of engineering interest,to form a set of site-specific UHS.展开更多
The Tohoku-Oki earthquake (Mw 9.0) of March 11,2011, was the largest event in the history of Japan. This magnitude 9.0 mega-thrust earthquake initiated approximately 100 km off-shore of Miyagi prefecture and the rup...The Tohoku-Oki earthquake (Mw 9.0) of March 11,2011, was the largest event in the history of Japan. This magnitude 9.0 mega-thrust earthquake initiated approximately 100 km off-shore of Miyagi prefecture and the rupture extended 400-500 km along the Pacific plate. Due to the strong ground motions and tsunami associated by this event, approximately twenty thousand people were killed or missing and more than 220 thousands houses and buildings were totally or partially destroyed. This mega-thrust earthquake was not considered in the national seismic hazard maps for Japan that was published by the HERP (headquarters for earthquake research promotion) of Japan. By comparing the results of the seismic hazard assessment and observed strong ground motions, we understand that the results of assessment were underestimated in Fukushima prefecture and northern part of Ibaraki prefecture. Its cause primarily lies in that it failed to evaluate the Mw 9.0 mega-thrust earthquake in the long-term evaluation for seismic activities. On the other hand, another cause is that we could not make the functional framework which is prepared for treatment of uncertainty for probabilistic seismic hazard assessment work fully. Based on the lessons learned from this earthquake disaster and the experience that we have engaged in the seismic hazard mapping project of Japan, we consider problems and issues to be resolved for probabilistic seismic hazard assessment and make new proposals to improve probabilistic seismic hazard assessment for Japan.展开更多
Earthquake is a sudden release of energy due to fault motions.The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment,microzonation studies a...Earthquake is a sudden release of energy due to fault motions.The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment,microzonation studies and appropriate building codes.展开更多
In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addit...In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addition to crustal earthquakes provided by catalogues, recent paleoseismological and neotectonic investigations have permitted to consider events which occurred during the last 400 years.Four seismogenic sources that could cause damages to the studied site corresponding to Precordillera,Western Sierras Pampeanas, Basement of the Cuyana Basin and Cordillera Principal were identified.Based on the evaluation of the contribution of these sources,maximum moment magnitudes above 7.5(Mw) are expected.High values of SA(spectral acceleration)(0.2 and 1 s periods) and PGA(peak ground acceleration) were found in the city of San Juan, which suggests that it is located in a zone of high seismic hazard.Finally, the obtained SA spectra were compared with the seismic-resistant construction standards of Argentina INPRES-CIRSOC 103 [1]. Results suggest that for the city of San Juan and for a return period of475 years, it covers the seismic requirements of the structures.展开更多
The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statis-tical zone scenarios. The influence of uncertainty in seismic statistical zone delimiting on the eva...The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statis-tical zone scenarios. The influence of uncertainty in seismic statistical zone delimiting on the evaluation result is discussed too. It can be seen that for those local sites along zone's border or within areas with vast change of upper bound magnitude among different scenarios the influence on seismic hazard result should not be neglected.展开更多
This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Th...This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Then the viewpoints are emphasized, making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method. The concept of seismic statistical zone and its history of evolvement are introduced too. Large differences between these rwo concepts exist separately in their statistical property, actual meaning, gradation, required scale, and property of refusing to overlap each other, aim and usage of delimitation. But in current engineering practice, these two concepts are confused. On the one hand, it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up; on the other hand, researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment, mechanism of earthquake generating also pause to go ahead. Major conclusions are given in the end of this paper, that seismic statistical zone bases on the result of seismic belt delimiting, it only arises in and can be used in the especial PSHA method of China with considering spatially and temporally inhomogeneous seismic activities, and its concept should be clearly differentiated from the concept of seismic belt.展开更多
In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performan...In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.展开更多
The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and...The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and all their operational and safety related support systems,the storage of spent fuel in temporary or permanent storage facilities also poses a seismic risk. This seismic risk is typically assessed with state-of-the-art modeling and analytical tools that capture everything from the ground rupture or source of the earthquake to the site specific ground shaking,taking geotechnical parameters and soilfoundationstructureinteraction (SFSI) into account to the non-linear structural response of the reactor core,the containment structure,the core cooling system and the emergency cooling system(s),to support systems,piping systems and non-structural components,and finally the performance of spent fuel storage in the probabilistically determined operational basis earthquake (OBE) or the safe shutdown earthquake (SSE) scenario. The best and most meaningful validation and verification of these advanced analytical tools is in the form of full or very large scale experimental testing,designed and conducted in direct support of model and analysis tool calibration. This paper outlines the principles under which such calibration testing should be conducted and illustrates with examples the kind of testing and parameter evaluation required.展开更多
Subduction of Indian plate beneath the Eurasian plate has formed three thrust faults along Himalayas. Due to continuous shortening, many earthquakes have occurred in the past causing massive deaths and destructions s...Subduction of Indian plate beneath the Eurasian plate has formed three thrust faults along Himalayas. Due to continuous shortening, many earthquakes have occurred in the past causing massive deaths and destructions showing that earthquakes are the greatest threat. Seismic hazard of the central Himalayan region has been examined based upon kernel density function method. Faults are so nearer that it is difficult to judge which earthquake belongs to which fault and even some parts of the faults do not hold earthquakes, and usual method of assigning the earthquakes to the nearest fault developing magnitude-frequency relationship is not applicable. Thus, seismic hazard is estimated considering area sources with different densities at each location based upon historical earthquakes using kernel density functions which account both earthquake sizes and numbers. Fault is considered as one earthquake with its highest magnitude at centre when calculating density but does not aid in earthquake data base for recurrence relationship. Since there are no specific attenuation laws developed for the Himalayan region, five attenuation laws developed for other subduction zones are selected and used giving equal weight to all to minimize the uncertainties. Then, probabilistic spectra for various natural periods at Kathmandu are calculated and plotted.展开更多
This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of proje...This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.展开更多
Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic ear...Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.展开更多
基金the“Seismic hazard assessment of the territories of regions and cities of Kazakhstan on a modern scientific and methodological basis”,program code F.0980,IRN OR11465449The funding source is the Ministry of Education and Science of the Republic of Kazakhstan。
文摘Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,developed by our Institute of Seismology using a new methodological approach for Kazakhstan.The article is about creating the first normative map of the Detailed Seismic Zoning on a probabilistic foundation for the Republic of Kazakhstan’s East Kazakhstan region.We carried out the probabilistic assessment of seismic hazard using a methodology consistent with the main provisions of Eurocode 8and updated compared with that used in developing maps of Kazakhstan’s General Seismic Zoning and seismic microzoning of Almaty.The most thorough and current data accessible for the area under consideration were combined with contemporary analytical techniques.Updates have been done to not only the databases being used but also the way seismic sources were shown,including active faults now.On a scale of 1:1000000,precise seismic zoning maps of the East Kazakhstan region were created for two probabilities of exceedance:10%and 2%in 50 years in terms of peak ground accelerations and macroseismic intensities.The obtained seismic hazard distribution is generally consistent with the General Seismic Zoning of Kazakhstan’s previous findings.However,because active faults were included and a thoroughly revised catalog was used,there are more pronounced zones of increased danger along the fault in the western part of the region.In the west of the territory,acceleration values also increased due to a more accurate consideration of seismotectonic conditions.Zoning maps are the basis for developing new state building regulations of the Republic of Kazakhstan.
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(No.2011BAK12B09)the National Natural Science Foundation of China(41402321,41502313)+1 种基金the Project of China Geological Survey(No.12120113038000)China Special Project of Basic Work of Science and Technology(No.2011FY110100-2)
文摘The eastern Himalayan syntaxis is one of the most tectonically active and earthquake-prone regions on Earth where earthquake-induced geological disasters occur frequently and caused great damages. With the planning and construction of Sichuan-Tibet highway, Sichuan-Tibet railway and hydropower development on the Yarlung Zangbo River etc. in recent years, it is very important to evaluate the seismic landslide hazard of this region. In this paper, a seismic landslide hazard map is produced based on seismic geological background analysis and field investigation using Newmark method with 10% PGA exceedance probabilities in future 50 years by considering the influence of river erosion, active faults and seismic amplification for the first time. The results show that the areas prone to seismic landslides are distributed on steep slopes along the drainages and the glacier horns as well as ridges on the mountains. The seismic landslide hazard map produced in this study not only predicts the most prone seismic landslide areas in the future 50 years but also provides a reference for mitigation strategies to reduce the exposure of the new building and planning projects to seismic landslides.
基金"Development of the Map of General Seismic Zoning in the Territory of the Republic of Kazakhstan" (state registration 0113RK01142)"Development of the map of Seismic Microzoning of the Territory of Almaty City"(state registration 0115RK02701)funded within the state funding
文摘As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.
基金supported by the grants of the National Nature Science Foundation of China (No. 41761144076, 41490611)the collaborative research program of the Disaster Prevention Research Institute of Kyoto University (No. 29W-03)+2 种基金the COX visiting professor fellowship of the Stanford University to L.B.the Chinese Academy of Sciences (CAS)The World Academy of Sciences (TWAS) President’s Ph D Fellowship to M.M.R
文摘The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic belt in the future. Reliable seismic hazard assessment is a critical element in development of policy for seismic hazard mitigation and risk reduction. In this study, we conduct probabilistic seismic hazard assessment using three different seismogenic source models(smoothed gridded, linear, and areal sources)based on the complicated tectonics of the study area. Two sets of ground motion prediction equations are combined in a standard logic tree by taking into account the epistemic uncertainties in hazard estimation. Long-term slip rates and paleoseismic records are also incorporated in the linear source model. Peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s for 2% and 10%probabilities of exceedance in 50 years are estimated. The resulting maps show significant spatial variation in seismic hazard levels. The region of the Lesser Himalaya is found to have high seismic hazard potential. Along the Main Himalayan Thrust from east to west beneath the Main Central Thrust, large earthquakes have occurred regularly in history; hazard values in this region are found to be higher than those shown on existing hazard maps. In essence, the combination of long span earthquake catalogs and multiple seismogenic source models gives improved seismic hazard constraints in Nepal.
文摘The new method for determining ground-motion parameters in the Indonesian Earthquake Resistant Building Code SNI (Indonesia National Standard) 03-1726-2012 has significant changes than the previous code. The maps of mean and modal of magnitude and distance presented here are intended to convey information about the distribution ofprobabilistic seismic sources and to provide prescriptions or suggestions for seismic sources to use in developing artificial ground motion in building design or retrofit projects. This paper presents deaggregation of Indonesia Seismic Hazard Map 2010 for Sumatra. Deaggregation for 0.2-s and 1.0-s pseudo SA (spectral acceleration) is performed for 10% PE (probability of exceedance) in 50 years (475-year mean return period) and 2% PE in 50 years (2,475-year mean return period). The information of deaggregation analysis can and perhaps should be considered in a complex seismic-resistant design decision-making environment.
基金funded by the National Key R&D Program (Grants No. 2018YFC1504601)National Natural Science Foundation of China (Grants No. 41572313 and 41702343)China Geological Survey Project (Grant No. DD20190717)
文摘Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situations are very complex and thus uncertainties of some parameters such as water content conditions and critical displacement are difficult to describe with accurate mathematical models. In this study, we present a probabilistic methodology based on the probabilistic seismic hazard analysis method and the Newmark’s displacement model. The Tianshui seismic zone(105°00′-106°00′ E, 34°20′-34°40′ N) in the northeastern Tibetan Plateau were used as an example. Arias intensity with three standard probabilities of exceedance(63%, 10%, and 2% in 50 years) in accordance with building design provisions were used to compute Newmark displacements by incorporating the effects of topographic amplification.Probable scenarios of water content condition were considered and three water content conditions(dry,wet and saturated) were adopted to simulate the effect of pore-water on slope. The influence of 5 cm and 10 cm critical displacements were investigated in order to analyze the sensitivity of critical displacement to the probabilities of earthquake-induced landslide occurrence. The results show that water content in particular, have a great influence on the distribution of high seismic landslide hazard areas. Generally, the dry coverage analysis represents a lower bound for susceptibility and hazard assessment, and the saturated coverage analysis represents an upper bound to some extent. Moreover, high seismic landslide hazard areas are also influenced by the critical displacements. The slope failure probabilities during future earthquakes with critical displacements of 5 cm can increase by a factor of 1.2 to 2.3 as compared to that of 10 cm. It suggests that more efforts are required in order to obtain reasonable threshold values for slope failure. Considering the probable scenarios of water content condition which is varied with seasons, seismic landslide hazard assessments are carried out for frequent, occasional and rare earthquake occurrences in the Tianshui region, which can provide a valuable reference for landslide hazard management and infrastructure design in mountainous seismic zones.
文摘The site of Mansehra is located seismically in an active regime, known as the Crystalline Nappe Zone and Hazara-Kashmir Syntaxis in NW Himalayas, Pakistan. Seismic Hazard Assessment (SHA) for the site has been carried out by considering the earthquake source zones, selection of appropriate attenuation equations, near fault effects and maximum potential magnitude estimation. The Mansehra Thrust, Oghi Fault, Banna Thrust, Balakot Shear Zone, Main Boundary Thrust, Panjal Thrust, Jhelum Fault and Muzaffarabad Fault and, further to the south, the Sanghargali, Nathiagali, and Thandiani Thrusts are the most critical tectonic features within the 50 km radius of Mansehra. Using the available instrumental seismological data from 1904 to 2007, SHA has been carried out. Other reactivated critical tectonic features in the area have been investigated. Among them the Balakot-Bagh fault, with the fault length of 120 km from Balakot to Poonch, has been considered as the most critical tectonic feature on the basis of geological/structural/seismological data. The potential earthquake of maximum magnitude 7.8 has been assigned to the Balakot-Bagh fault using four regression relations. The peak ground acceleration value of 0.25 g (10% probability of exceedance for 50 years) and 0.5 g has been calculated with the help of the attenuation equation using probabilistic and deterministic approaches.
文摘Many destructive earthquakes happened in Tehran, Iran in the last centuries. The existence of active faults like the North Tehran is the main cause of seismicity in this city. According to past investigations, it is estimated that in the scenario of activation of the North Tehran fault, many structures in Tehran will collapse. Therefore, it is necessary to incorporate the near field rupture directivity effects of this fault into the seismic hazard assessment of important sites in Tehran. In this study, using calculations coded in MATLAB, Probabilistic Seismic Hazard Analysis (PSHA) is conducted for an important site in Tehran. Following that, deaggregation technique is performed on PSHA and the contribution of seis- mic scenarios to hazard is obtained in the range of distance and magnitude. After identifying the North Tehran fault as the most hazardous source affecting the site in 10000-year return period, rupture directivity effects of this fault is incorporated into the seismic hazard assessment using Somerville et al. (1997) model with broadband approach and Shahi and Baker (2011) model with narrowband approach. The results show that the narrowband approach caused a 27% increase in the peak of response spectrum in 10000-year return period compared with the conventional PSHA. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.
基金Foundation item: Joint Seismological Science Foundation of China (104065)Social Public Welfare Special Foundation of the Na-tional Research Institutes (2005DIB3J119).
文摘Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may have great influence upon the seismic hazard of a site which is near the source. Under this circumstance, it is unreasonable to use the simplified potential source models in the PSHA, so a potential rupture surface model is proposed in this paper. Adopting this model, we analyze the seismic hazard near the Chelungpu fault that generated the Chi-Chi (Jiji) earthquake with magnitude 7.6 and the following conclusions are reached. (1) This model is reasonable on the base of focal mechanism, especially for sites near potential earthquakes with large magnitude; (2) The attitudes of potential rupture surfaces have great influence on the results of probabilistic seismic hazard analysis and seismic zoning.
文摘-Conventional Probabilistic Seismic Hazard Analysis(PSHA) is difficult to apply in regions lacking sufficient information of the geological setting,active faults,and so forth.Also,for a site-specific PSHA,site effects arising from both crustal rock and overlying soil sediments are generally not assessed rigorously.This is of particular importance for those metropolitan cities having a significant proportion of reclaimed land,because the site-to-site variability of such site effects can be very large.The objective of this paper is to demonstrate an alternative procedure for constructing site-specific uniform hazard response spectra(UHS),extended from a recently-developed Direct Amplitude-Based(DAB) approach.The method has a number of important advantages compared with conventional PSHA.Using the proposed approach,response spectral values have been computed for the whole period range of engineering interest,to form a set of site-specific UHS.
文摘The Tohoku-Oki earthquake (Mw 9.0) of March 11,2011, was the largest event in the history of Japan. This magnitude 9.0 mega-thrust earthquake initiated approximately 100 km off-shore of Miyagi prefecture and the rupture extended 400-500 km along the Pacific plate. Due to the strong ground motions and tsunami associated by this event, approximately twenty thousand people were killed or missing and more than 220 thousands houses and buildings were totally or partially destroyed. This mega-thrust earthquake was not considered in the national seismic hazard maps for Japan that was published by the HERP (headquarters for earthquake research promotion) of Japan. By comparing the results of the seismic hazard assessment and observed strong ground motions, we understand that the results of assessment were underestimated in Fukushima prefecture and northern part of Ibaraki prefecture. Its cause primarily lies in that it failed to evaluate the Mw 9.0 mega-thrust earthquake in the long-term evaluation for seismic activities. On the other hand, another cause is that we could not make the functional framework which is prepared for treatment of uncertainty for probabilistic seismic hazard assessment work fully. Based on the lessons learned from this earthquake disaster and the experience that we have engaged in the seismic hazard mapping project of Japan, we consider problems and issues to be resolved for probabilistic seismic hazard assessment and make new proposals to improve probabilistic seismic hazard assessment for Japan.
基金partially supported by the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(2018VMA0007)
文摘Earthquake is a sudden release of energy due to fault motions.The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment,microzonation studies and appropriate building codes.
文摘In this study, we present a PSHA(Probabilistic Seismic Hazard Analysis) for the city of San Juan, which is located in the central-western region of Argentina(30°S-35.5°S; 66.5°W-71°W). In addition to crustal earthquakes provided by catalogues, recent paleoseismological and neotectonic investigations have permitted to consider events which occurred during the last 400 years.Four seismogenic sources that could cause damages to the studied site corresponding to Precordillera,Western Sierras Pampeanas, Basement of the Cuyana Basin and Cordillera Principal were identified.Based on the evaluation of the contribution of these sources,maximum moment magnitudes above 7.5(Mw) are expected.High values of SA(spectral acceleration)(0.2 and 1 s periods) and PGA(peak ground acceleration) were found in the city of San Juan, which suggests that it is located in a zone of high seismic hazard.Finally, the obtained SA spectra were compared with the seismic-resistant construction standards of Argentina INPRES-CIRSOC 103 [1]. Results suggest that for the city of San Juan and for a return period of475 years, it covers the seismic requirements of the structures.
基金Chinese Joint Seismological Science Foundation (100110).
文摘The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statis-tical zone scenarios. The influence of uncertainty in seismic statistical zone delimiting on the evaluation result is discussed too. It can be seen that for those local sites along zone's border or within areas with vast change of upper bound magnitude among different scenarios the influence on seismic hazard result should not be neglected.
文摘This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Then the viewpoints are emphasized, making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method. The concept of seismic statistical zone and its history of evolvement are introduced too. Large differences between these rwo concepts exist separately in their statistical property, actual meaning, gradation, required scale, and property of refusing to overlap each other, aim and usage of delimitation. But in current engineering practice, these two concepts are confused. On the one hand, it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up; on the other hand, researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment, mechanism of earthquake generating also pause to go ahead. Major conclusions are given in the end of this paper, that seismic statistical zone bases on the result of seismic belt delimiting, it only arises in and can be used in the especial PSHA method of China with considering spatially and temporally inhomogeneous seismic activities, and its concept should be clearly differentiated from the concept of seismic belt.
文摘In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.
文摘The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and all their operational and safety related support systems,the storage of spent fuel in temporary or permanent storage facilities also poses a seismic risk. This seismic risk is typically assessed with state-of-the-art modeling and analytical tools that capture everything from the ground rupture or source of the earthquake to the site specific ground shaking,taking geotechnical parameters and soilfoundationstructureinteraction (SFSI) into account to the non-linear structural response of the reactor core,the containment structure,the core cooling system and the emergency cooling system(s),to support systems,piping systems and non-structural components,and finally the performance of spent fuel storage in the probabilistically determined operational basis earthquake (OBE) or the safe shutdown earthquake (SSE) scenario. The best and most meaningful validation and verification of these advanced analytical tools is in the form of full or very large scale experimental testing,designed and conducted in direct support of model and analysis tool calibration. This paper outlines the principles under which such calibration testing should be conducted and illustrates with examples the kind of testing and parameter evaluation required.
文摘Subduction of Indian plate beneath the Eurasian plate has formed three thrust faults along Himalayas. Due to continuous shortening, many earthquakes have occurred in the past causing massive deaths and destructions showing that earthquakes are the greatest threat. Seismic hazard of the central Himalayan region has been examined based upon kernel density function method. Faults are so nearer that it is difficult to judge which earthquake belongs to which fault and even some parts of the faults do not hold earthquakes, and usual method of assigning the earthquakes to the nearest fault developing magnitude-frequency relationship is not applicable. Thus, seismic hazard is estimated considering area sources with different densities at each location based upon historical earthquakes using kernel density functions which account both earthquake sizes and numbers. Fault is considered as one earthquake with its highest magnitude at centre when calculating density but does not aid in earthquake data base for recurrence relationship. Since there are no specific attenuation laws developed for the Himalayan region, five attenuation laws developed for other subduction zones are selected and used giving equal weight to all to minimize the uncertainties. Then, probabilistic spectra for various natural periods at Kathmandu are calculated and plotted.
基金sponsored by the Specific Fund of Fundamental Research,Institute of Geophysics,China Earthquake Administration (DQJB16B19)
文摘This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U2039204)the National Key R&D Program of China(Grant No.2018YFC1504203).
文摘Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.