This study explored the buckling of multiple intersecting spherical shells.A three-segment spherical shell was designed using the theory of deformation coordination;the design was compared with that of a volume-equiva...This study explored the buckling of multiple intersecting spherical shells.A three-segment spherical shell was designed using the theory of deformation coordination;the design was compared with that of a volume-equivalent cylindrical shell and ring-ribbed cylindrical shell.The numerical results indicated that the buckling capacity of the three-segment spherical shell was superior to those of the other two cylindrical shells.To validate our numerical approach,three laboratory-scale shell models were fabricated.Each model was accurately measured and slowly tested in a pressure chamber;thus,the tested shells were studied numerically.The experimental collapse modes agreed well with numerical results,and the collapse load of the three-segment pressure shell was considerably higher than that of the two cylindrical shells.展开更多
目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络...目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络(Long-short Term Memory Network,LSTM),将测点应力信息作为输入,将全局应力场信息作为输出,构建深潜耐压球壳应力场映射模型。最后,对不同测点下的映射结果进行分析。结果与模型试验结果相比,仿真误差小于2%。与DNN模型及BP模型相比,映射误差分别下降94.92%与97.76%。结论所提映射算法可在部分测点失效的情况下仍可以保持较高精度。展开更多
钛合金制深海载人潜水器耐压球壳属中厚度壳结构,上面设有人孔、观察窗等多个开孔,加工建造过程中又会产生初始缺陷,因此,这类结构的极限强度乃是设计者所必须关注的问题。本文利用AN SY S软件对上述有开孔耐压球壳的极限强度进行非线...钛合金制深海载人潜水器耐压球壳属中厚度壳结构,上面设有人孔、观察窗等多个开孔,加工建造过程中又会产生初始缺陷,因此,这类结构的极限强度乃是设计者所必须关注的问题。本文利用AN SY S软件对上述有开孔耐压球壳的极限强度进行非线性有限元分析,计算了局部缺陷范围及幅值的变化对壳体极限强度的影响。计算结果表明,有围壁加强的开孔耐压球壳与无开孔耐压球壳的极限强度相差不大。展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant numbers 51709132 and 51679133),Jiangsu Provincial Government Scholarship Programme,and the“Construction of a Leading Innovation Team”project by Hangzhou City Government.
文摘This study explored the buckling of multiple intersecting spherical shells.A three-segment spherical shell was designed using the theory of deformation coordination;the design was compared with that of a volume-equivalent cylindrical shell and ring-ribbed cylindrical shell.The numerical results indicated that the buckling capacity of the three-segment spherical shell was superior to those of the other two cylindrical shells.To validate our numerical approach,three laboratory-scale shell models were fabricated.Each model was accurately measured and slowly tested in a pressure chamber;thus,the tested shells were studied numerically.The experimental collapse modes agreed well with numerical results,and the collapse load of the three-segment pressure shell was considerably higher than that of the two cylindrical shells.
文摘目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络(Long-short Term Memory Network,LSTM),将测点应力信息作为输入,将全局应力场信息作为输出,构建深潜耐压球壳应力场映射模型。最后,对不同测点下的映射结果进行分析。结果与模型试验结果相比,仿真误差小于2%。与DNN模型及BP模型相比,映射误差分别下降94.92%与97.76%。结论所提映射算法可在部分测点失效的情况下仍可以保持较高精度。
文摘钛合金制深海载人潜水器耐压球壳属中厚度壳结构,上面设有人孔、观察窗等多个开孔,加工建造过程中又会产生初始缺陷,因此,这类结构的极限强度乃是设计者所必须关注的问题。本文利用AN SY S软件对上述有开孔耐压球壳的极限强度进行非线性有限元分析,计算了局部缺陷范围及幅值的变化对壳体极限强度的影响。计算结果表明,有围壁加强的开孔耐压球壳与无开孔耐压球壳的极限强度相差不大。
基金Supported by the Key Program of National Natural Science of China(Grant No.51439004)the General Program of National Natural Science Foundation of China(Grant No.51679133 and 51709132)