In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricat...In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.展开更多
Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collec...Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.展开更多
The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are ...The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are not clear. In the present study, a novel liquid film sensor is applied to measure the distributed signals of the liquid film in three-phase flow. Based on the liquid film signals, the liquid film characteristics including the structural characteristics and the nonlinear dynamics characteristics in three-phase flows are investigated for the first time. The structural characteristics including the proportion, the appearance frequency and the thickness of the liquid film are obtained and the influences of the liquid and gas superficial velocities and the oil content on them are investigated. To investigate the nonlinear dynamics characteristics of the liquid film with the changing flow conditions, the entropy analysis is introduced to successfully uncover and quantify the dynamic complexity of the liquid film behavior.展开更多
To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh...To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area.展开更多
The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm ...The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.展开更多
Three color variants of the sea cucumber,Apostichopus japonicus are recognized,the red one is highly valued in the market. When the red variant is cultured in ponds in China,its body color changes from red to celadon ...Three color variants of the sea cucumber,Apostichopus japonicus are recognized,the red one is highly valued in the market. When the red variant is cultured in ponds in China,its body color changes from red to celadon in 3–6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths(20,50,100,150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers(R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color,however the red body color was much more intense in sea cucumbers cultured at shallower depths,while animals suspended in deeper layers became pale. In a separate trial,A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate,followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color,although the red was most intense(highest R value) in animals cultured on a blue substrate and pale(lowest R value) for animals cultured on a green substrate.展开更多
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. ...Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean vertical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Relative Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the largest at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.展开更多
Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil w...Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil water content or soil water potential. However, sensor electrical output can also be affected by soil characteristics other than water content, such as soil texture, salinity, and temperature. This makes it difficult to accurately measure and interpret soil water status without prior on-site calibration. In this study, we investigated the impact of soil texture on the response of three types of sensors commonly used to monitor soil water status, including the Decagon EC-5, the Vegetronix VH400, and the Watermark 200ss granular matrix sensor. A replicated laboratory experiment was conducted to evaluate the response of these types of sensors using four major soil textural classes commonly found in South Carolina. We found that the three types of sensors had a significant response to changes in soil water content, but while the EC-5 and VH400 sensors had a linear response, the Watermark 200ss had a curvilinear response that was explained by an exponential decay function. The response of the three sensor types, however, was significantly affected by soil texture, which will significantly affect the trigger point used to initiate irrigation based on the output from these sensors. Therefore, it is suggested that guidelines on how to use these sensors for local soils need to be developed and made available to farmers, so that they can make better irrigation scheduling decisions.展开更多
Water outlets for washing hands and medical equipment are essential for preventing hospital infection. The present study clarified the effects of water flow volume on the identification and quantitative evaluation of ...Water outlets for washing hands and medical equipment are essential for preventing hospital infection. The present study clarified the effects of water flow volume on the identification and quantitative evaluation of bacteria found around spouts in the 17 hand-washing stations. Pseu-domonas aeruginosa was detected from 4 sta-tions before adjustment and 2 after adjustment. Although no significant difference was identified in the detection rate of P. aeruginosa (p = 0.368), when combining P. aeruginosa and glucose non-fermentative Gram-negative bacilli (NFB), the number of stations with P. aeruginosa and/or NFB decreased significantly from 15 before adjustment to 9 after adjustment (p = 0.023). Before adjust-ment, quantity of bacteria was “2+” for 3 stations and “1+” for 7 stations, but was “1+” for 3 stations and “2+” for 0 stations after adjustment. These results show that quantity of bacteria could be reduced from spouts by adjusting flow volume. These results were also supported by experiments for cleanliness using Adenosine 5’-triphosphate bioluminescence me- thod.展开更多
Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of develop...Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.展开更多
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and...To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.展开更多
The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uph...The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uphill Battles for Integrated Bohai Sea Management”(UBIBSM,2018–2020)was implemented by the Chinese government.To evaluate the action effectiveness toward water quality improvement,variability of the satelliteobserved water transparency(Secchi disk depth,Z_(SD))was explored,with special emphasis on the nearshore waters(within 20 km from the coastline)prone to terrestrial influence.(1)Compared to the status before the action began(2011–2017),majority(87.3%)of the nearshore waters turned clear during the action implementation period(2018–2020),characterized by the elevated Z_(SD)by 11.6%±12.1%.(2)Nevertheless,the improvement was not spatially uniform,with higher Z_(SD)improvement in provinces of Hebei,Liaoning,and Shandong(13.2%±16.5%,13.2%±11.6%,10.8%±10.2%,respectively)followed by Tianjin(6.2%±4.7%).(3)Bayesian trend analysis found the abrupt Z_(SD)improvement in April 2018,which coincided with the initiation of UBIBSM,implying the water quality response to pollution control.More importantly,the independent statistics of land-based pollutant discharge also indicated that the significant reduction of terrestrial pollutant input during the UBIBSM action was the main driver of observed Z_(SD)improvement.(4)Compared with previous pollution control actions in the BS,UBIBSM was found to be the most successful one during the past 20 years,in terms of transparency improvement over nearshore waters.The presented results proved the UBIBSM-achieved remarkable water quality improvement,taking the advantage of long-term consistent and objective data record from satellite ocean color observation.展开更多
Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of...Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems.展开更多
Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influen...Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants.展开更多
A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in...A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.展开更多
The data of SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), installed on SeaStar, has been used to generate SSC (suspended sediment concentration) of complex and turbid coastal waters in China. In view of the problem...The data of SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), installed on SeaStar, has been used to generate SSC (suspended sediment concentration) of complex and turbid coastal waters in China. In view of the problems of the SeaDAS (SeaWiFS Data Analysis System) algorithm applied to China coastal waters, a new atmospheric correction algorithm is discussed, developed, and used for the SSC of East China coastal waters. The advantages of the new algorithm are described through the comparison of the results from different algorithms.展开更多
Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland...Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.展开更多
The numerical simulation of the influence of a reservoir water body on the Binchuan airgun source could provide a theoretical basis to analyze the data obtained from the active source detection and inversion of region...The numerical simulation of the influence of a reservoir water body on the Binchuan airgun source could provide a theoretical basis to analyze the data obtained from the active source detection and inversion of regional interior medium structures.Based on a medium model containing limited water body,we use the finite different method to simulate the effect of the water level,excitation energy and focal depth.The results show that the influence on the waveform amplitude caused by the water level changing is very large near the water body,and that a high water level or large amplitude change can have a larger effect.However,for stations beyond a certain epicentral distance,the influence will be weakened and kept stable.As for the Binchuan airgun source,amplitude fluctuation caused by the water level changing becomes very small(±0.05 times)after propagating a certain distance,so we can remove the influence of the water level changing by referring to the numerical simulation result.Wave amplitude increases linearly with the excitation energy and focal depth,therefore,the greater the energy and the deeper the focal depth,the better the effect of the excitation,and is more conducive in detecting remote and deep penetration underground structures.展开更多
Sea ice melt water and circumpolar deep water(CDW)intrusion have important impacts on the ecosystem of the Amundsen Sea.In this study,samples of nutrients and phytoplankton pigments from nine stations in the eastern A...Sea ice melt water and circumpolar deep water(CDW)intrusion have important impacts on the ecosystem of the Amundsen Sea.In this study,samples of nutrients and phytoplankton pigments from nine stations in the eastern Amundsen Sea were collected during the austral summer.Based on in-situ hydrological observations,sea ice density data from satellite remote sensing,and chemical taxonomy calculations,the relationships between environmental factors and phytoplankton biomass and community structure were studied.The results showed that with increasing latitude,the contribution of sea ice melt water(MW%)and the stability of the water body increased,and the depth of the mixed layer(MLD)decreased.The integrated concentration of chlorophyll a(Chl-a)ranged from 21.4 mg·m^(−2) to 148.4 mg·m^(−2)(the average value was 35.7±53.4 mg·m^(−2)).Diatoms(diatoms-A[Fragilariopsis spp.,Chaetoceros spp.,and Proboscia spp.]and diatoms-B[Pseudonitzschia spp.])and Phaeocystis antarctica were the two most widely distributed phytoplankton groups and contributed 32%±16%and 28%±11%,respectively,of the total biomass.The contributions of Dinoflagellates,Chlorophytes,Cryptophytes,the high-iron group of P.antarctica,and Diatom group A were approximately 17%±8%,15%±13%,9%±6%,5%±9%,and 3%±7%,respectively.The area with the highest phytoplankton biomass was located near the ice-edge region,with a short time lag(T_(lag))between sampling and complete sea ice melt and a high MW%,while the area with the second-highest Chl-a concentration was located in the area affected by the upwelling of CDW,with thorough water mixing.Vertically,in the area with a short T_(lag) and a shallow MLD,the phytoplankton biomass and proportion of diatoms decreased rapidly with increasing water depth.In contrast,in the region with a long T_(lag) and limited CDW upwelling,the phytoplankton community was dominated by a relatively constant and high proportion of micro phytoplankton,and the phytoplankton biomass was low and relatively stable vertically.Generally,the phytoplankton community structure and biomass in the study area showed high spatial variation and were sensitive to environmental changes.展开更多
基金supported by the National Natural Science Foundation of China(22308210)the Scientific Research Program Funded by Shaanxi Provincial Education Department(23JK0350)+3 种基金the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(KFKT2021-12)the Opening Project of Key Laboratory of Leather Chemistry and Engineering(Sichuan University),Ministry of Education(2022)the RIKEN-MOST Project between the Ministry of Science and Technology of the People's Republic of China(MOST)and RIKEN,the China Scholarship Council(202108610127)the Natural Science Foundation of Shaanxi University of Science&Technology(2019BT-44).
文摘In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.
基金supported by Center for Resiliency(CfR)at Lamar University(Grant No.22PSSO1).
文摘Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.
基金supported by the National Natural Science Foundation of China (42074142, 51527805, 41974139)China Postdoctoral Science Foundation (2020M680969, 2021T140099)the Fundamental Research Funds for the Central Universities (N2104013)。
文摘The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are not clear. In the present study, a novel liquid film sensor is applied to measure the distributed signals of the liquid film in three-phase flow. Based on the liquid film signals, the liquid film characteristics including the structural characteristics and the nonlinear dynamics characteristics in three-phase flows are investigated for the first time. The structural characteristics including the proportion, the appearance frequency and the thickness of the liquid film are obtained and the influences of the liquid and gas superficial velocities and the oil content on them are investigated. To investigate the nonlinear dynamics characteristics of the liquid film with the changing flow conditions, the entropy analysis is introduced to successfully uncover and quantify the dynamic complexity of the liquid film behavior.
基金financially supported by the Ecological and Environmental Monitoring Project (JJ[2011]-017)funded by the Executive Office of the Three Gorges Project Construction Committee of the State Council of China+1 种基金the National Non-Profit Research Program of China (200903001)the National Basic Research Program of China(2010CB429001)
文摘To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area.
基金The National Natural Science Foundation of China under contract Nos 40631006 and 40876003the Polar Science Youth Innovational Foundation of China under contract No. 20080221the National Key Basic Research Program "973" of China under contract No. 2010CB950301
文摘The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.
基金Supported by the National Natural Science Foundation of China(No.31440089)the National Spark Program of China(No.2014GA690259)+2 种基金the National Marine Public Welfare Project of China(No.200905020)the Natural Science Research General Program of Jiangsu Provincial Higher Education Institutions(No.14KJD240002)the Special Guide Fund Project of Agricultural Science and Technology Innovation of Yancheng(No.13KJB610056)
文摘Three color variants of the sea cucumber,Apostichopus japonicus are recognized,the red one is highly valued in the market. When the red variant is cultured in ponds in China,its body color changes from red to celadon in 3–6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths(20,50,100,150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers(R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color,however the red body color was much more intense in sea cucumbers cultured at shallower depths,while animals suspended in deeper layers became pale. In a separate trial,A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate,followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color,although the red was most intense(highest R value) in animals cultured on a blue substrate and pale(lowest R value) for animals cultured on a green substrate.
文摘Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean vertical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Relative Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the largest at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.
文摘Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil water content or soil water potential. However, sensor electrical output can also be affected by soil characteristics other than water content, such as soil texture, salinity, and temperature. This makes it difficult to accurately measure and interpret soil water status without prior on-site calibration. In this study, we investigated the impact of soil texture on the response of three types of sensors commonly used to monitor soil water status, including the Decagon EC-5, the Vegetronix VH400, and the Watermark 200ss granular matrix sensor. A replicated laboratory experiment was conducted to evaluate the response of these types of sensors using four major soil textural classes commonly found in South Carolina. We found that the three types of sensors had a significant response to changes in soil water content, but while the EC-5 and VH400 sensors had a linear response, the Watermark 200ss had a curvilinear response that was explained by an exponential decay function. The response of the three sensor types, however, was significantly affected by soil texture, which will significantly affect the trigger point used to initiate irrigation based on the output from these sensors. Therefore, it is suggested that guidelines on how to use these sensors for local soils need to be developed and made available to farmers, so that they can make better irrigation scheduling decisions.
文摘Water outlets for washing hands and medical equipment are essential for preventing hospital infection. The present study clarified the effects of water flow volume on the identification and quantitative evaluation of bacteria found around spouts in the 17 hand-washing stations. Pseu-domonas aeruginosa was detected from 4 sta-tions before adjustment and 2 after adjustment. Although no significant difference was identified in the detection rate of P. aeruginosa (p = 0.368), when combining P. aeruginosa and glucose non-fermentative Gram-negative bacilli (NFB), the number of stations with P. aeruginosa and/or NFB decreased significantly from 15 before adjustment to 9 after adjustment (p = 0.023). Before adjust-ment, quantity of bacteria was “2+” for 3 stations and “1+” for 7 stations, but was “1+” for 3 stations and “2+” for 0 stations after adjustment. These results show that quantity of bacteria could be reduced from spouts by adjusting flow volume. These results were also supported by experiments for cleanliness using Adenosine 5’-triphosphate bioluminescence me- thod.
文摘Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.
基金supported by the National Natural Science Foundation of China(No.51876114)the Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.
基金The fund supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2021SP313the fundamental research funds for the Central Universities of Sun Yat-Sen University under contract No.23xkjc019the fund supported by China-Korea Joint Ocean Research Center of China under contract No. PI-2022-1-01
文摘The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uphill Battles for Integrated Bohai Sea Management”(UBIBSM,2018–2020)was implemented by the Chinese government.To evaluate the action effectiveness toward water quality improvement,variability of the satelliteobserved water transparency(Secchi disk depth,Z_(SD))was explored,with special emphasis on the nearshore waters(within 20 km from the coastline)prone to terrestrial influence.(1)Compared to the status before the action began(2011–2017),majority(87.3%)of the nearshore waters turned clear during the action implementation period(2018–2020),characterized by the elevated Z_(SD)by 11.6%±12.1%.(2)Nevertheless,the improvement was not spatially uniform,with higher Z_(SD)improvement in provinces of Hebei,Liaoning,and Shandong(13.2%±16.5%,13.2%±11.6%,10.8%±10.2%,respectively)followed by Tianjin(6.2%±4.7%).(3)Bayesian trend analysis found the abrupt Z_(SD)improvement in April 2018,which coincided with the initiation of UBIBSM,implying the water quality response to pollution control.More importantly,the independent statistics of land-based pollutant discharge also indicated that the significant reduction of terrestrial pollutant input during the UBIBSM action was the main driver of observed Z_(SD)improvement.(4)Compared with previous pollution control actions in the BS,UBIBSM was found to be the most successful one during the past 20 years,in terms of transparency improvement over nearshore waters.The presented results proved the UBIBSM-achieved remarkable water quality improvement,taking the advantage of long-term consistent and objective data record from satellite ocean color observation.
基金Project supported by the National Natural Science Foundation of China (No.30470329,40671036,30600092)"Xibuzhiguang"Project of the Chinese Academy of Sciences (CAS).
文摘Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems.
基金funded by the National Basic Research Program of China(2009CB825102)the National Basic Research Program of China(2009CB421102E)+1 种基金the International Science & Technology Cooperation Program of China(2010DFA92720)the Natural Science Foundation of China(4117049)
文摘Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants.
基金The project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200428)the National Natural Science Foundation of China (10272072and 50424913)the Shanghai Natural Science Foundation(05ZR14048)
文摘A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.
文摘The data of SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), installed on SeaStar, has been used to generate SSC (suspended sediment concentration) of complex and turbid coastal waters in China. In view of the problems of the SeaDAS (SeaWiFS Data Analysis System) algorithm applied to China coastal waters, a new atmospheric correction algorithm is discussed, developed, and used for the SSC of East China coastal waters. The advantages of the new algorithm are described through the comparison of the results from different algorithms.
文摘Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.
基金jointly sponsored by the Earthquake Science and Technology Spark Program(XH18044Y)the National Natural Science Foundation of China(41474048,41574059)
文摘The numerical simulation of the influence of a reservoir water body on the Binchuan airgun source could provide a theoretical basis to analyze the data obtained from the active source detection and inversion of regional interior medium structures.Based on a medium model containing limited water body,we use the finite different method to simulate the effect of the water level,excitation energy and focal depth.The results show that the influence on the waveform amplitude caused by the water level changing is very large near the water body,and that a high water level or large amplitude change can have a larger effect.However,for stations beyond a certain epicentral distance,the influence will be weakened and kept stable.As for the Binchuan airgun source,amplitude fluctuation caused by the water level changing becomes very small(±0.05 times)after propagating a certain distance,so we can remove the influence of the water level changing by referring to the numerical simulation result.Wave amplitude increases linearly with the excitation energy and focal depth,therefore,the greater the energy and the deeper the focal depth,the better the effect of the excitation,and is more conducive in detecting remote and deep penetration underground structures.
基金financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 02-02, 01-01-02)supported by the National Natural Science Foundation of China (Grant nos. 41976228, 41976227, 41506223)the Scientific Research Fund of the Second Institute of Oceanography, MNR (Grant nos. JG1805, JG2011, JG2013)。
文摘Sea ice melt water and circumpolar deep water(CDW)intrusion have important impacts on the ecosystem of the Amundsen Sea.In this study,samples of nutrients and phytoplankton pigments from nine stations in the eastern Amundsen Sea were collected during the austral summer.Based on in-situ hydrological observations,sea ice density data from satellite remote sensing,and chemical taxonomy calculations,the relationships between environmental factors and phytoplankton biomass and community structure were studied.The results showed that with increasing latitude,the contribution of sea ice melt water(MW%)and the stability of the water body increased,and the depth of the mixed layer(MLD)decreased.The integrated concentration of chlorophyll a(Chl-a)ranged from 21.4 mg·m^(−2) to 148.4 mg·m^(−2)(the average value was 35.7±53.4 mg·m^(−2)).Diatoms(diatoms-A[Fragilariopsis spp.,Chaetoceros spp.,and Proboscia spp.]and diatoms-B[Pseudonitzschia spp.])and Phaeocystis antarctica were the two most widely distributed phytoplankton groups and contributed 32%±16%and 28%±11%,respectively,of the total biomass.The contributions of Dinoflagellates,Chlorophytes,Cryptophytes,the high-iron group of P.antarctica,and Diatom group A were approximately 17%±8%,15%±13%,9%±6%,5%±9%,and 3%±7%,respectively.The area with the highest phytoplankton biomass was located near the ice-edge region,with a short time lag(T_(lag))between sampling and complete sea ice melt and a high MW%,while the area with the second-highest Chl-a concentration was located in the area affected by the upwelling of CDW,with thorough water mixing.Vertically,in the area with a short T_(lag) and a shallow MLD,the phytoplankton biomass and proportion of diatoms decreased rapidly with increasing water depth.In contrast,in the region with a long T_(lag) and limited CDW upwelling,the phytoplankton community was dominated by a relatively constant and high proportion of micro phytoplankton,and the phytoplankton biomass was low and relatively stable vertically.Generally,the phytoplankton community structure and biomass in the study area showed high spatial variation and were sensitive to environmental changes.