The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a...Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.展开更多
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a...Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.展开更多
Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction o...Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction of bridge pile foundations,accidents such as hole collapse,slurry leakage,and drill sticking will easily occur.In this paper,the principle and method of sonar detection for detecting karst caves at the bottom of bridge piles was introduced,and the sonar detection data and the cave situation at the bottom of the pile during the construction process in combination with the case of Yunnan Zhenguo Highway Project was analyzed,which verifies the practicability and reliability of sonar detection method reliability.展开更多
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaus...Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaustive attempts, and exorbitant manpower costs. Machine learning (ML) burgeons and provokes an interest in rationally designing and synthesizing materials. Here, we collect the dataset of nano-functional materials carbon dots (CDs) on synthetic parameters and optical properties. ML is applied to assist the synthesis process to enhance photoluminescence quantum yield (QY) by building the methodology named active adaptive method (AAM), including the model selection, max points screen, and experimental verification. An interactive iteration strategy is the first time considered in AAM with the constant acquisition of the furnished data by itself to perfect the model. CDs exhibit a strong red emission with QY up to 23.3% and enhancement of around 200% compared with the pristine value obtained through the AAM guidance. Furthermore, the guided CDs are applied as metal ions probes for Co^(2+) and Fe^(3+), with a concentration range of 0–120 and 0–150 µM, and their detection limits are 1.17 and 0.06 µM. Moreover, we also apply CDs for dental diagnosis and treatment using excellent optical ability. It can effectively detect early caries and treat mineralization combined with gel. The study shows that the error of experiment verification gradually decreases and QY improves double with the effective feedback loops by AAM, suggesting the great potential of utilizing ML to guide the synthesis of novel materials. Finally, the code is open-source and provided to be referenced for further investigation on the novel inorganic material prediction.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide b...Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.展开更多
As a new type of environmental pollutants,microplastics have gradually attracted people's attention.A large number of plastics discharged into the environment by human beings are constantly aging and breaking,and ...As a new type of environmental pollutants,microplastics have gradually attracted people's attention.A large number of plastics discharged into the environment by human beings are constantly aging and breaking,and finally become microplastics.Microplastics can adsorb pollutants in the environment,and their components have certain toxicity,which can cause different degrees of harm to organisms.Due to the structural characteristics of microplastic particles,such as small particle size,large specific surface area,and their distribution in different environmental media,it is very difficult to accurately detect microplastics.Reliable collection and detection methods are the key to the study of environmental behavior of microplastics.In this study,the collection and detection methods of microplastics in the environment were reviewed,and the development direction of microplastics detection technology in the future was prospected.This study has a certain reference value for the related research and the prevention and treatment of micro-plastic pollution.展开更多
Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization i...Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.展开更多
In this paper, the focus is on the boundary stability of a nanolayer in diffusion-reaction systems, taking into account a nonlinear boundary control condition. The authors focus on demonstrating the boundary stability...In this paper, the focus is on the boundary stability of a nanolayer in diffusion-reaction systems, taking into account a nonlinear boundary control condition. The authors focus on demonstrating the boundary stability of a nanolayer using the Lyapunov function approach, while making certain regularity assumptions and imposing appropriate control conditions. In addition, the stability analysis is extended to more complex systems by studying the limit problem with interface conditions using the epi-convergence approach. The results obtained in this article are then tested numerically to validate the theoretical conclusions.展开更多
A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method was established for the detection of wheat streak mosaic virus (WSMV). Ac-cording to the conservative regions of the genes that encod...A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method was established for the detection of wheat streak mosaic virus (WSMV). Ac-cording to the conservative regions of the genes that encode the coat protein of WSMV, 2 pairs of primers were designed. Final y, the 1st pair of primers was select-ed through the specificity test. The sensitivity test showed the sensitivity of RT-LAMP method was 10 times higher than that of RT-PCR. In addition, the amplifica-tion of target gene could be judged visual y from the presence of fluorescence (cal-cein) in the final reaction system. The RT-LAMP method, established in this study, was rapid, easy, specific and sensitive. Moreover, it did not require sophisticated equip-ment. The RT-LAMP was suitable for the rapid detection of WSMV.展开更多
Rice bacterial leaf brown spot disease caused by Pseudomonas syringae pv.syringae(Pss)is a major disease on rice.In recent years,Pss has emerged worldwide,seriously affecting rice production.It is very important to es...Rice bacterial leaf brown spot disease caused by Pseudomonas syringae pv.syringae(Pss)is a major disease on rice.In recent years,Pss has emerged worldwide,seriously affecting rice production.It is very important to establish a rapid detection method of Pss for the diagnosis and prevention of this disease.In order to robust and accurately diagnose the rice bacterial leaf brown spot disease in the field and laboratory,an assay system for the Pss was developed in this study,and the specific sequence of hrcN was used as the target,based on loop-mediated isothermal amplification(LAMP).The best detection system was MgSO 48 mmol·L^(-1),Bst DNA polymerase 8 U,dNTP 1.4 mmol·L^(-1),the ratio of internal and outer primers was 2:1,the reaction temperature was 63℃,the reaction time was 45 min,and the lowest sensitivity was 104 CFU·mL^(-1).This results provided an accurate and robust method for laboratory and field diagnosis of bacterial leaf brown spot disease of rice.展开更多
Mycotoxins and their derivatives since their discoveries and until the present time are behind unspecified economic and medical damages.Aflatoxins are classified according to their physical–chemical and toxicological...Mycotoxins and their derivatives since their discoveries and until the present time are behind unspecified economic and medical damages.Aflatoxins are classified according to their physical–chemical and toxicological characters in the most dangerous row of the mycotoxins.These aflatoxins are in part responsible,of irreversible medical disasters that are not easily manageable such as cancer of the liver and kidneys,and in the other part,of losses in the stored cereal products.Based on these crucial findings,monitoring of this toxin became imperative in post-harvest food products,during storage,during transformation chain and even during the long phases of conservation.Vigilance of this toxin is delivered by detection methods using very advanced technologies to respond in the shortest possible times.In addition,the knowledge of factors supporting the biosynthesis of aflatoxins such as the temperature,moisture content,concentration of nitrogen and carbon,and the molecules responsible for the genetic control of the synthesis will be reflected later in the choice of bio-control techniques.This control is currently based on new strategies using the bioactives substances of the plants,the lactic bacteria and some strains of actinomycetes that have good inhibiting activity against aflatoxins with fewer side effects on Man.On the other hand,this brief review summarizes the results of new studies demonstrating the toxicity of the toxin,new detection methods and bio-control.展开更多
Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD...Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.展开更多
SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative proba...SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative probabilities between the number of anticyclonic/cyclonic ME fronts(AEF/CEF)and the number of anticyclones/cyclones reached 20%.The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts,although CEFs were nearly equally distributed in all directions.The number of ME fronts had remarkable seasonal variations,while the eddy kinetic energy(EKE)showed no seasonal variations.The total EKE at the ME fronts was three times of that within the MEs,and it was much stronger in AEFs than in CEFs.The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Ni?o-Southern Oscillation(ENSO)index.Possible mechanisms of ME fronts were discussed,but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.展开更多
In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in th...In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.展开更多
Dengue virus infections are increasing worldwide generally and in Asia,Central and South America and Africa,particularly.It poses a serious threat to the children population.The rapid and accurate diagnostic systems a...Dengue virus infections are increasing worldwide generally and in Asia,Central and South America and Africa,particularly.It poses a serious threat to the children population.The rapid and accurate diagnostic systems are essentially required due to lack of effective vaccine against dengue virus and the progressive spread of the dengue virus infection.The recent progress in developing micro-and nano-fabrication techniques has led to low cost and scale down the biomedical point-of-care devices.Starting from the conventional and modern available methods for the diagnosis of dengue infection,this review examines several emerging rapid and point-of-care diagnostic devices that hold significant potential for the progress in smart diagnosis tools.The given review revealed that an effective vaccine is required urgently against all the dengue virus serotypes.However,the rapid detection methods of dengue virus help in early treatment and significantly reduce the dengue virus outbreak.展开更多
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
基金Project(52109132)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE270)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(JMDPC202204)supported by State Key Laboratory of Strata Intelligent Control,Green Mining Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and Technology,China。
文摘Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
文摘Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.
文摘Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction of bridge pile foundations,accidents such as hole collapse,slurry leakage,and drill sticking will easily occur.In this paper,the principle and method of sonar detection for detecting karst caves at the bottom of bridge piles was introduced,and the sonar detection data and the cave situation at the bottom of the pile during the construction process in combination with the case of Yunnan Zhenguo Highway Project was analyzed,which verifies the practicability and reliability of sonar detection method reliability.
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金the support from Beijing National Science Foundation(No.L222109)the Military Health Care Project(No.22BJZ22)+1 种基金Q.X.acknowledges the support from the National Natural Science Foundation of China(No.52211530034)the Beijing National Science Foundation(No.3222018).
文摘Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaustive attempts, and exorbitant manpower costs. Machine learning (ML) burgeons and provokes an interest in rationally designing and synthesizing materials. Here, we collect the dataset of nano-functional materials carbon dots (CDs) on synthetic parameters and optical properties. ML is applied to assist the synthesis process to enhance photoluminescence quantum yield (QY) by building the methodology named active adaptive method (AAM), including the model selection, max points screen, and experimental verification. An interactive iteration strategy is the first time considered in AAM with the constant acquisition of the furnished data by itself to perfect the model. CDs exhibit a strong red emission with QY up to 23.3% and enhancement of around 200% compared with the pristine value obtained through the AAM guidance. Furthermore, the guided CDs are applied as metal ions probes for Co^(2+) and Fe^(3+), with a concentration range of 0–120 and 0–150 µM, and their detection limits are 1.17 and 0.06 µM. Moreover, we also apply CDs for dental diagnosis and treatment using excellent optical ability. It can effectively detect early caries and treat mineralization combined with gel. The study shows that the error of experiment verification gradually decreases and QY improves double with the effective feedback loops by AAM, suggesting the great potential of utilizing ML to guide the synthesis of novel materials. Finally, the code is open-source and provided to be referenced for further investigation on the novel inorganic material prediction.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
文摘Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.
基金Supported by Project of National Center of Technology Innovation for Dairy"Study on the Key Technologies of Microplastics Detection for New Pollutants in Dairy Ingredient Water"(2023-KFKT-24).
文摘As a new type of environmental pollutants,microplastics have gradually attracted people's attention.A large number of plastics discharged into the environment by human beings are constantly aging and breaking,and finally become microplastics.Microplastics can adsorb pollutants in the environment,and their components have certain toxicity,which can cause different degrees of harm to organisms.Due to the structural characteristics of microplastic particles,such as small particle size,large specific surface area,and their distribution in different environmental media,it is very difficult to accurately detect microplastics.Reliable collection and detection methods are the key to the study of environmental behavior of microplastics.In this study,the collection and detection methods of microplastics in the environment were reviewed,and the development direction of microplastics detection technology in the future was prospected.This study has a certain reference value for the related research and the prevention and treatment of micro-plastic pollution.
基金Geological and Mineral Resources Survey of Metallogenic Belt in the Middle and Lower Reaches of Yangtze River,Grant/Award Number:1212011220540Jiangsu 1:50000 Dingsanwei,Kaishan Island,Yangqiao,Chenjiagang,New Huaihe Estuary,Xiangshui Estuary,Dayou,Xiaojie,DayuJian District,Grant/Award Numbers:Base[2012]02‐014‐009,Base[2013]01‐019‐002,Base[2014]01‐021‐003。
文摘Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability.
文摘In this paper, the focus is on the boundary stability of a nanolayer in diffusion-reaction systems, taking into account a nonlinear boundary control condition. The authors focus on demonstrating the boundary stability of a nanolayer using the Lyapunov function approach, while making certain regularity assumptions and imposing appropriate control conditions. In addition, the stability analysis is extended to more complex systems by studying the limit problem with interface conditions using the epi-convergence approach. The results obtained in this article are then tested numerically to validate the theoretical conclusions.
文摘A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method was established for the detection of wheat streak mosaic virus (WSMV). Ac-cording to the conservative regions of the genes that encode the coat protein of WSMV, 2 pairs of primers were designed. Final y, the 1st pair of primers was select-ed through the specificity test. The sensitivity test showed the sensitivity of RT-LAMP method was 10 times higher than that of RT-PCR. In addition, the amplifica-tion of target gene could be judged visual y from the presence of fluorescence (cal-cein) in the final reaction system. The RT-LAMP method, established in this study, was rapid, easy, specific and sensitive. Moreover, it did not require sophisticated equip-ment. The RT-LAMP was suitable for the rapid detection of WSMV.
基金Supported by the Natural Science Foundation of Heilongjiang Province(Topic C2017032)Heilongjiang Province Applied Technology Research and Development Program(Topic GA19B104)the National Key Research and Development Program(Topic 2018YFD0300105)。
文摘Rice bacterial leaf brown spot disease caused by Pseudomonas syringae pv.syringae(Pss)is a major disease on rice.In recent years,Pss has emerged worldwide,seriously affecting rice production.It is very important to establish a rapid detection method of Pss for the diagnosis and prevention of this disease.In order to robust and accurately diagnose the rice bacterial leaf brown spot disease in the field and laboratory,an assay system for the Pss was developed in this study,and the specific sequence of hrcN was used as the target,based on loop-mediated isothermal amplification(LAMP).The best detection system was MgSO 48 mmol·L^(-1),Bst DNA polymerase 8 U,dNTP 1.4 mmol·L^(-1),the ratio of internal and outer primers was 2:1,the reaction temperature was 63℃,the reaction time was 45 min,and the lowest sensitivity was 104 CFU·mL^(-1).This results provided an accurate and robust method for laboratory and field diagnosis of bacterial leaf brown spot disease of rice.
文摘Mycotoxins and their derivatives since their discoveries and until the present time are behind unspecified economic and medical damages.Aflatoxins are classified according to their physical–chemical and toxicological characters in the most dangerous row of the mycotoxins.These aflatoxins are in part responsible,of irreversible medical disasters that are not easily manageable such as cancer of the liver and kidneys,and in the other part,of losses in the stored cereal products.Based on these crucial findings,monitoring of this toxin became imperative in post-harvest food products,during storage,during transformation chain and even during the long phases of conservation.Vigilance of this toxin is delivered by detection methods using very advanced technologies to respond in the shortest possible times.In addition,the knowledge of factors supporting the biosynthesis of aflatoxins such as the temperature,moisture content,concentration of nitrogen and carbon,and the molecules responsible for the genetic control of the synthesis will be reflected later in the choice of bio-control techniques.This control is currently based on new strategies using the bioactives substances of the plants,the lactic bacteria and some strains of actinomycetes that have good inhibiting activity against aflatoxins with fewer side effects on Man.On the other hand,this brief review summarizes the results of new studies demonstrating the toxicity of the toxin,new detection methods and bio-control.
基金supported by the National Key R&D Program of China grant number 2017YFA0603504the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA17010101the National Natural Science Foundation of Chinagrant number 41875183。
文摘Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.
基金The National Natural Science Foundation of China under contract No.41976002。
文摘SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative probabilities between the number of anticyclonic/cyclonic ME fronts(AEF/CEF)and the number of anticyclones/cyclones reached 20%.The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts,although CEFs were nearly equally distributed in all directions.The number of ME fronts had remarkable seasonal variations,while the eddy kinetic energy(EKE)showed no seasonal variations.The total EKE at the ME fronts was three times of that within the MEs,and it was much stronger in AEFs than in CEFs.The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Ni?o-Southern Oscillation(ENSO)index.Possible mechanisms of ME fronts were discussed,but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.
文摘In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.
基金supported by the Scientific Research Fund of the Shenzhen International cooperation projects under Grant Nos.(GJHZ20190819151403615)the Natural Science Youth Foundation of China(61801307).
文摘Dengue virus infections are increasing worldwide generally and in Asia,Central and South America and Africa,particularly.It poses a serious threat to the children population.The rapid and accurate diagnostic systems are essentially required due to lack of effective vaccine against dengue virus and the progressive spread of the dengue virus infection.The recent progress in developing micro-and nano-fabrication techniques has led to low cost and scale down the biomedical point-of-care devices.Starting from the conventional and modern available methods for the diagnosis of dengue infection,this review examines several emerging rapid and point-of-care diagnostic devices that hold significant potential for the progress in smart diagnosis tools.The given review revealed that an effective vaccine is required urgently against all the dengue virus serotypes.However,the rapid detection methods of dengue virus help in early treatment and significantly reduce the dengue virus outbreak.