The differences in organic matter abundance and rock composition between shale and mudstone determine the discrepancy of their contributions to the formation of conventional and shale oil/gas reservoirs.The evaluation...The differences in organic matter abundance and rock composition between shale and mudstone determine the discrepancy of their contributions to the formation of conventional and shale oil/gas reservoirs.The evaluation criteria of source rocks are different in the future exploration in self-sourced petroleum systems.Shales are deposited in deep/semi-deep lacustrine,with low sedimentation rate and chemical depositions of various degrees,while mudstones are mostly formed in shallow lacustrine/lakeside,with high deposition rate and density flow characteristics.Three factors contribute to the enrichment of organic matter in shales,including the"fertility effect"caused by volcanic ash deposition and hydrothermal injection,excessive and over-speed growth of organisms promoted by radioactive materials,and deep-water anaerobic environment and low sedimentation rate to protect the accumulation of organic matter from dilution.Lamellations in shales are easy to be stripped into storage space,and acid water produced during hydrocarbon generation can dissolve some particles to generate new pores.The massive mudstones with high clay content are of poor matrix porosity.Shales with high total organic carbon,developed laminations,relatively good reservoir property,and high brittle mineral content,are the most favorable lithofacies for shale oil exploration and development.It is necessary to conduct investigation on the differences between shale and mudstone reservoirs,to identify resources distribution in shale and mudstone formations,determine the type and standard of"sweet-spot"evaluation parameters,optimize"sweet-spot areas/sections",and adopt effective development technologies,which is of great significance to objectively evaluate the total amount and economy of shale oil resources,as well as the scale of effective exploitation.展开更多
Many regions are pounded with heavy rainfall, causing flood, casualties, property damage and severe destruction to ecosystem in multiple urban areas. Frequent occurrence of extremely heavy precipitation event under th...Many regions are pounded with heavy rainfall, causing flood, casualties, property damage and severe destruction to ecosystem in multiple urban areas. Frequent occurrence of extremely heavy precipitation event under the background of global climate change has caused terrible harm on economic and social development, life security, ecosystem, etc.;brought profound impact on sustainable development of disaster area;become a key factor of global and regional disasters and environmental risk;and been widely concerned by academic circle and all sectors of the society. So severe disasters caused by extreme precipitation events have attracted more and more attention, while the relationship between heavy rainfall with different duration and total heavy rainfall has become the hottest scientific frontier issue. Contribution of heavy rainfall with different duration to the total heavy rainfall has significant spatial differences. Here we used daily rainfall data from 1961 to 2015 of 659 meteorological stations in China. When the rainfall is greater than 50 mm in 24 hours, that is a heavy rainfall event. Heavy rainfall only lasting one day is defined as short- duration heavy rainfall, while heavy rainfall lasting more than two days is defined as long-duration heavy rainfall. Results indicated that: on the basis of duration days defined long-duration heavy rainfall, on the spatial distribution, total rainfall, total heavy rainfall and short-duration heavy rainfall showed "increasing-decreasing-increasing" from the southeast coast to northwest inland in China from 1961 to 2015, and on the whole meteorological station with increasing trend predominant. In the meantime, long-duration heavy rainfall showed "increasing-decreasing" spatial pattern, and on the whole meteorological station with decreasing trend predominant. We detected that there was a belt of becoming drought from northeast to southwest. The contribution of total heavy rainfall to total rainfall as well as long-duration heavy rainfall to total heavy rainfall showed "high in southeast-low in northwest" spatial distribution pattern. On the contrary, the contribution of short-duration heavy rainfall to total heavy rainfall showed "low in southeast-high in northwest" spatial distribution pattern. The contribution trend of total heavy rainfall to total rainfall and short-duration heavy rainfall to total heavy rainfall showed "increasing-mosaic with increasing and decreasing-increasing" spatial distribution pattern from northeast to southwest, and on the whole meteorological station with increasing trend predominant. On the contrary, the contribution trend of long-duration heavy rainfall to total heavy rainfall showed mosaic with increasing and increasing in the northeast, slightly decreasing in the southwest, and on the whole meteorological station with decreasing trend predominant. There was a climate transition zone from northeast to southwest, which was essentially coincident with the arid zone. The results suggested that the precipitation in China was changing to extremely accompanied by short-duration storm increased significantly. Chinese heavy rainfall especially the increase of short-duration heavy rainfall suggests that human activity is likely to be triggered an increasing in extreme precipitation.展开更多
The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetatio...The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity.展开更多
Since medical insurance of our country developed, it is continued to deepen reform and became the basic form of the pcrfcct medical insurance system. However, regional differences still exist. The current medical insu...Since medical insurance of our country developed, it is continued to deepen reform and became the basic form of the pcrfcct medical insurance system. However, regional differences still exist. The current medical insurance system of China's urban and rural structure background of two structures of serious, city residents, workers and rural residents is significantly difference in the payment period ,for this question ,the difference between our country will solve the basic medical insurance payment period, the relative level of regulating wages and medical people in our country and develop the medical insurance level, narrow the regional differences, reduce cost problem caused by population flow management, the basic medical insurance system for suggestions to improve the unified and promoting the social and economic level, people's medical security level, perfect improvement of physical insurance system of medical insurance according to the long-term sustainable development has a far-reaching significance.展开更多
China's Social Security (SS) has got a series of remarkable achievements, however it has also revealed problems and obstacles. Social insurance contribution relates to the source of social security fund, which clos...China's Social Security (SS) has got a series of remarkable achievements, however it has also revealed problems and obstacles. Social insurance contribution relates to the source of social security fund, which closely involves with the interests of thousands of participants. But now some employers in China, still intentionally or accidentally escape or slack off their own social insurance obligation, with the method of deliberately reducing Social Security contribution base, to reach the goal of paying inadequate social sccurity fees to meet its own maximum benefits. This paper bases on the previous literature in the field of problems in SS contributions, supported by theoretical knowledge of Game theory to analyze the potential strategies every player would adopt in their pursuit of maximum self-interest, then finds out the influencing factors of SS enterprise behavior in dodging SS fees, according to the results of game equilibrium, detailed solutions would be given to solve the problem of enterprise not fully contributing social security fees.展开更多
Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tr...Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.展开更多
Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on p...Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on physical experiments.Through calibration,the simulated results agreed with the experimental results.Three findings were obtained.First,the pressure distribution intrinsically depends on the depressurization effectiveness in each coal seam.The gas pressure difference and interval distance influence the pressure distribution by inhibiting depressurization in the top seams and bottom seams,respectively.Second,the production contribution shows a logarithmic relationship with the permeability ratio.The range of the production contribution difference grows from 11.24%to 99.99%when the permeability ratio increases 50 times.By comparison,reservoir pressure has a limited influence,with a maximum of 13.64%.Third,the interlayer interference of the top seams and bottom seams can be intensified by the reservoir pressure difference and the interval distance,respectively.The proposed model has been calibrated and verified and can be directly applied to engineering,serving as a reference for reservoir combination optimization.In summary,coal seams with a permeability ratio within 10,reservoir pressure difference within 1.50 MPa,and interval distances within 50 m are recommended to coproduce together.展开更多
Ecosystem Services(ES)are common-pool resources that can be valued by people’s willingness to pay(WTP).In contrast to place-based WTP research at the community-level,the stakeholders tend to be geographically diverse...Ecosystem Services(ES)are common-pool resources that can be valued by people’s willingness to pay(WTP).In contrast to place-based WTP research at the community-level,the stakeholders tend to be geographically diverse,and the benefits are not spatially apparent on the national level.Aiming to find the geographical diversity of the WTP for ES at the large scale,this study implemented an online survey of more than 25,000 samples to detect the WTP of Chinese people for water conservation,soil retention,carbon fixation,pollution decomposition,biodiversity conservation,and aesthetic existence of the Tibetan Plateau.The results showed the top limit of payments was 1,080.95 CNY/year/capita on average,and people would like to pay 172.40 CNY/year/capita for water conservation,which is the highest among the six ES.The percent of people“Aged 16–35”,“Government agency staff”and“Know WTP”influenced payments at provincial level.On an individual level,people’s knowledge and attitudes directly drove the payment amounts,as well as their ecosystem management decisions.Consequently,geographical diversity of the payment for ES exists in China,and in contrast to the objective social structure and spatial accessibility of ES,people’s knowledge and attitudes were the main driving forces of this geographical diversity.These findings suggest that a bottom-up adaptive governance approach is encouraged for managing common pool resources in developing countries.展开更多
With a high-resolution SO2 emission inventory categorized by industries and seasons for Beijing city and gridded meteorological data fields from NCEP, the pollution dispersion model, HYSPLIT4 (Hybrid Single Particulat...With a high-resolution SO2 emission inventory categorized by industries and seasons for Beijing city and gridded meteorological data fields from NCEP, the pollution dispersion model, HYSPLIT4 (Hybrid Single Particulate Lagrangian Integrated Trajectory, version 4), is used to determine the day-to-day variation of surface SO2 in Beijing for 2000 and 2001. Furthermore,the contributions of different emission sources in and around Beijing to the surface SO2 are studied. As shown in comparison with observations, the model does well in simulating the daily variation and seasonal distribution. The model computation of the annual source contributions to Beijing surface SO2 indicates that local emissions from the city give the largest contribution and the sources from the surrounding regions contribute only about 20%. During SO2 polluted or unpolluted days, the contribution from the latter can exceed 30%, and depending upon weather conditions, the contribution may exceed 40%. If the emissions from the surrounding sources during the winter heating season are assumed to be doubled in intensity, their contribution to surface SO2 in Beijing increased from 21% to 35% and 25% to 40% in 2000 and 2001, respectively. Evaluation of 7 types of emission sources identified for Beijing for their relative contribution to the concentration of surface SO2 has shown that area emissions by industrial production and furnaces, though discharging relatively small amounts (less than 1/3 of the total), have the largest contribution to the urban surface SO2, which is the key to the mitigation of the pollutant in the city.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)
文摘The differences in organic matter abundance and rock composition between shale and mudstone determine the discrepancy of their contributions to the formation of conventional and shale oil/gas reservoirs.The evaluation criteria of source rocks are different in the future exploration in self-sourced petroleum systems.Shales are deposited in deep/semi-deep lacustrine,with low sedimentation rate and chemical depositions of various degrees,while mudstones are mostly formed in shallow lacustrine/lakeside,with high deposition rate and density flow characteristics.Three factors contribute to the enrichment of organic matter in shales,including the"fertility effect"caused by volcanic ash deposition and hydrothermal injection,excessive and over-speed growth of organisms promoted by radioactive materials,and deep-water anaerobic environment and low sedimentation rate to protect the accumulation of organic matter from dilution.Lamellations in shales are easy to be stripped into storage space,and acid water produced during hydrocarbon generation can dissolve some particles to generate new pores.The massive mudstones with high clay content are of poor matrix porosity.Shales with high total organic carbon,developed laminations,relatively good reservoir property,and high brittle mineral content,are the most favorable lithofacies for shale oil exploration and development.It is necessary to conduct investigation on the differences between shale and mudstone reservoirs,to identify resources distribution in shale and mudstone formations,determine the type and standard of"sweet-spot"evaluation parameters,optimize"sweet-spot areas/sections",and adopt effective development technologies,which is of great significance to objectively evaluate the total amount and economy of shale oil resources,as well as the scale of effective exploitation.
基金Supported by the National Natural Science Fund(41801064)China Postdoctoral Science Foundation(2019T120114,2019M650756)the Central Asian Atmospheric Science Research Fund(CAAS201804)
文摘Many regions are pounded with heavy rainfall, causing flood, casualties, property damage and severe destruction to ecosystem in multiple urban areas. Frequent occurrence of extremely heavy precipitation event under the background of global climate change has caused terrible harm on economic and social development, life security, ecosystem, etc.;brought profound impact on sustainable development of disaster area;become a key factor of global and regional disasters and environmental risk;and been widely concerned by academic circle and all sectors of the society. So severe disasters caused by extreme precipitation events have attracted more and more attention, while the relationship between heavy rainfall with different duration and total heavy rainfall has become the hottest scientific frontier issue. Contribution of heavy rainfall with different duration to the total heavy rainfall has significant spatial differences. Here we used daily rainfall data from 1961 to 2015 of 659 meteorological stations in China. When the rainfall is greater than 50 mm in 24 hours, that is a heavy rainfall event. Heavy rainfall only lasting one day is defined as short- duration heavy rainfall, while heavy rainfall lasting more than two days is defined as long-duration heavy rainfall. Results indicated that: on the basis of duration days defined long-duration heavy rainfall, on the spatial distribution, total rainfall, total heavy rainfall and short-duration heavy rainfall showed "increasing-decreasing-increasing" from the southeast coast to northwest inland in China from 1961 to 2015, and on the whole meteorological station with increasing trend predominant. In the meantime, long-duration heavy rainfall showed "increasing-decreasing" spatial pattern, and on the whole meteorological station with decreasing trend predominant. We detected that there was a belt of becoming drought from northeast to southwest. The contribution of total heavy rainfall to total rainfall as well as long-duration heavy rainfall to total heavy rainfall showed "high in southeast-low in northwest" spatial distribution pattern. On the contrary, the contribution of short-duration heavy rainfall to total heavy rainfall showed "low in southeast-high in northwest" spatial distribution pattern. The contribution trend of total heavy rainfall to total rainfall and short-duration heavy rainfall to total heavy rainfall showed "increasing-mosaic with increasing and decreasing-increasing" spatial distribution pattern from northeast to southwest, and on the whole meteorological station with increasing trend predominant. On the contrary, the contribution trend of long-duration heavy rainfall to total heavy rainfall showed mosaic with increasing and increasing in the northeast, slightly decreasing in the southwest, and on the whole meteorological station with decreasing trend predominant. There was a climate transition zone from northeast to southwest, which was essentially coincident with the arid zone. The results suggested that the precipitation in China was changing to extremely accompanied by short-duration storm increased significantly. Chinese heavy rainfall especially the increase of short-duration heavy rainfall suggests that human activity is likely to be triggered an increasing in extreme precipitation.
基金supported by the National Natural Science Foundation of China (42377472, 42174055)the Jiangxi Provincial Social Science "Fourteenth Five-Year Plan" (2024) Fund Project (24GL45)+1 种基金the Research Center of Resource and Environment Economics (20RGL01)the Provincial Finance Project of Jiangxi Academy of Sciences-Young Talent Cultivation Program (2023YSBG50010)
文摘The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity.
文摘Since medical insurance of our country developed, it is continued to deepen reform and became the basic form of the pcrfcct medical insurance system. However, regional differences still exist. The current medical insurance system of China's urban and rural structure background of two structures of serious, city residents, workers and rural residents is significantly difference in the payment period ,for this question ,the difference between our country will solve the basic medical insurance payment period, the relative level of regulating wages and medical people in our country and develop the medical insurance level, narrow the regional differences, reduce cost problem caused by population flow management, the basic medical insurance system for suggestions to improve the unified and promoting the social and economic level, people's medical security level, perfect improvement of physical insurance system of medical insurance according to the long-term sustainable development has a far-reaching significance.
文摘China's Social Security (SS) has got a series of remarkable achievements, however it has also revealed problems and obstacles. Social insurance contribution relates to the source of social security fund, which closely involves with the interests of thousands of participants. But now some employers in China, still intentionally or accidentally escape or slack off their own social insurance obligation, with the method of deliberately reducing Social Security contribution base, to reach the goal of paying inadequate social sccurity fees to meet its own maximum benefits. This paper bases on the previous literature in the field of problems in SS contributions, supported by theoretical knowledge of Game theory to analyze the potential strategies every player would adopt in their pursuit of maximum self-interest, then finds out the influencing factors of SS enterprise behavior in dodging SS fees, according to the results of game equilibrium, detailed solutions would be given to solve the problem of enterprise not fully contributing social security fees.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No.RO 294/9).
文摘Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.
基金This research was supported by National Science and Technology Major Project(No.2016ZX05044002-005)and National Natural Science Foundation of China(No.41772155)The first author gratefully acknowledges financial support from China Scholarship Council(No.CSC201906420044)and expresses thanks to Richard Smith and Eric Lysczek for grammar check.
文摘Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on physical experiments.Through calibration,the simulated results agreed with the experimental results.Three findings were obtained.First,the pressure distribution intrinsically depends on the depressurization effectiveness in each coal seam.The gas pressure difference and interval distance influence the pressure distribution by inhibiting depressurization in the top seams and bottom seams,respectively.Second,the production contribution shows a logarithmic relationship with the permeability ratio.The range of the production contribution difference grows from 11.24%to 99.99%when the permeability ratio increases 50 times.By comparison,reservoir pressure has a limited influence,with a maximum of 13.64%.Third,the interlayer interference of the top seams and bottom seams can be intensified by the reservoir pressure difference and the interval distance,respectively.The proposed model has been calibrated and verified and can be directly applied to engineering,serving as a reference for reservoir combination optimization.In summary,coal seams with a permeability ratio within 10,reservoir pressure difference within 1.50 MPa,and interval distances within 50 m are recommended to coproduce together.
基金supported by the Strategic Prior-ity Research Program of Chinese Academy of Sciences(Grant No.XDA20020402)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0405)+1 种基金the National Natu-ral Science Foundation of China(Grant No.41861134038)and the Fundamental Research Funds for the Central Universities of China.
文摘Ecosystem Services(ES)are common-pool resources that can be valued by people’s willingness to pay(WTP).In contrast to place-based WTP research at the community-level,the stakeholders tend to be geographically diverse,and the benefits are not spatially apparent on the national level.Aiming to find the geographical diversity of the WTP for ES at the large scale,this study implemented an online survey of more than 25,000 samples to detect the WTP of Chinese people for water conservation,soil retention,carbon fixation,pollution decomposition,biodiversity conservation,and aesthetic existence of the Tibetan Plateau.The results showed the top limit of payments was 1,080.95 CNY/year/capita on average,and people would like to pay 172.40 CNY/year/capita for water conservation,which is the highest among the six ES.The percent of people“Aged 16–35”,“Government agency staff”and“Know WTP”influenced payments at provincial level.On an individual level,people’s knowledge and attitudes directly drove the payment amounts,as well as their ecosystem management decisions.Consequently,geographical diversity of the payment for ES exists in China,and in contrast to the objective social structure and spatial accessibility of ES,people’s knowledge and attitudes were the main driving forces of this geographical diversity.These findings suggest that a bottom-up adaptive governance approach is encouraged for managing common pool resources in developing countries.
文摘With a high-resolution SO2 emission inventory categorized by industries and seasons for Beijing city and gridded meteorological data fields from NCEP, the pollution dispersion model, HYSPLIT4 (Hybrid Single Particulate Lagrangian Integrated Trajectory, version 4), is used to determine the day-to-day variation of surface SO2 in Beijing for 2000 and 2001. Furthermore,the contributions of different emission sources in and around Beijing to the surface SO2 are studied. As shown in comparison with observations, the model does well in simulating the daily variation and seasonal distribution. The model computation of the annual source contributions to Beijing surface SO2 indicates that local emissions from the city give the largest contribution and the sources from the surrounding regions contribute only about 20%. During SO2 polluted or unpolluted days, the contribution from the latter can exceed 30%, and depending upon weather conditions, the contribution may exceed 40%. If the emissions from the surrounding sources during the winter heating season are assumed to be doubled in intensity, their contribution to surface SO2 in Beijing increased from 21% to 35% and 25% to 40% in 2000 and 2001, respectively. Evaluation of 7 types of emission sources identified for Beijing for their relative contribution to the concentration of surface SO2 has shown that area emissions by industrial production and furnaces, though discharging relatively small amounts (less than 1/3 of the total), have the largest contribution to the urban surface SO2, which is the key to the mitigation of the pollutant in the city.