In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimatio...In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimation of the rock properties.Nevertheless,determination of rock properties is very difficult by the conventional methods in terms of high accuracy,and thus it is expensive and timeconsuming.In this context,a new technique was developed based on the estimation of rock properties using dominant frequencies from sound pressure level generated during diamond core drilling operations.First,sound pressure level was recorded and sound signals of these sound frequencies were analyzed using fast Fourier transform (FFT).Rock drilling experiments were performed on five different types of rock samples using computer numerical control (CNC) drilling machine BMV 45 T20.Using simple linear regression analysis,mathematical equations were developed for various rock properties,i.e.uniaxial compressive strength,Brazilian tensile strength,density,and dominant frequencies of sound pressure level.The developed models can be utilized at early stage of design to predict rock properties.展开更多
Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at ...Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at four axial positions (P1, P2, P3, and P4). Several characteristic indicators of the flow specifically of the pressure were calculated. In terms of these characteristic indicators, the effect of bed size on flow behavior was investigated. The results show that in the fully fluidized state, the pressure drop is slightly higher in smaller beds, but the pressure drops in the 10- and 15-cm beds are close. The 15-cm bed has the lowest pressure-fluctuation amplitude. The amplitudes at P1 and P2 in the lower part of the bed are very close for bed sizes below 10 cm, but the amplitude at P3 near the bed surface increases with decreasing bed size. No general trend was observed regarding the effect of bed size on skewness and kurtosis of the pressure for all four axial heights. For the average, standard deviation, skewness, and kurtosis of the pressure at P4, the values are close for the two small beds (2 × 10 and 5 × 5 cm2) and the two large beds (10 × 10 and 15 × 15 cm2), and hence the effect of bed size separates the beds into two groups. In the fully fluidized state, for P1, P2, and P3, the Kolmogorov entropy and the dominant frequency both increase with increasing bed size, but in the pseudo-2D bed both are between the values for the 5- and 10-cm beds.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.52376114,92041001)the Natural Science Foundation of Jiangsu Province(No.BK20200069)the National Science and Technology Major Projects(Nos.J2019-Ⅲ-0015-0059,2017-Ⅲ-0005-0029).
文摘In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimation of the rock properties.Nevertheless,determination of rock properties is very difficult by the conventional methods in terms of high accuracy,and thus it is expensive and timeconsuming.In this context,a new technique was developed based on the estimation of rock properties using dominant frequencies from sound pressure level generated during diamond core drilling operations.First,sound pressure level was recorded and sound signals of these sound frequencies were analyzed using fast Fourier transform (FFT).Rock drilling experiments were performed on five different types of rock samples using computer numerical control (CNC) drilling machine BMV 45 T20.Using simple linear regression analysis,mathematical equations were developed for various rock properties,i.e.uniaxial compressive strength,Brazilian tensile strength,density,and dominant frequencies of sound pressure level.The developed models can be utilized at early stage of design to predict rock properties.
基金The authors are grateful for the financial support from the National Key R&D Program of China(No.2017YFB0603901)and the National Natural Science Foundation of China(No.21376134).
文摘Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at four axial positions (P1, P2, P3, and P4). Several characteristic indicators of the flow specifically of the pressure were calculated. In terms of these characteristic indicators, the effect of bed size on flow behavior was investigated. The results show that in the fully fluidized state, the pressure drop is slightly higher in smaller beds, but the pressure drops in the 10- and 15-cm beds are close. The 15-cm bed has the lowest pressure-fluctuation amplitude. The amplitudes at P1 and P2 in the lower part of the bed are very close for bed sizes below 10 cm, but the amplitude at P3 near the bed surface increases with decreasing bed size. No general trend was observed regarding the effect of bed size on skewness and kurtosis of the pressure for all four axial heights. For the average, standard deviation, skewness, and kurtosis of the pressure at P4, the values are close for the two small beds (2 × 10 and 5 × 5 cm2) and the two large beds (10 × 10 and 15 × 15 cm2), and hence the effect of bed size separates the beds into two groups. In the fully fluidized state, for P1, P2, and P3, the Kolmogorov entropy and the dominant frequency both increase with increasing bed size, but in the pseudo-2D bed both are between the values for the 5- and 10-cm beds.