This year marks the40th anniversary of China’s opening up to the world.One of the key decisions during the early period after opening-up was the restoration of the national college entrance exam.As of today,China has...This year marks the40th anniversary of China’s opening up to the world.One of the key decisions during the early period after opening-up was the restoration of the national college entrance exam.As of today,China has produced nearly100million college students and6million overseas students,which provided a solid human resource background for China’s opening-up and economic growth.展开更多
On the basis of the geomorphology, paleosol, paleoclimate and loess age, major changes of the Loess Plateau were studied. There are five major changes in the evolution of the Loess Plateau in China. Among them, the fi...On the basis of the geomorphology, paleosol, paleoclimate and loess age, major changes of the Loess Plateau were studied. There are five major changes in the evolution of the Loess Plateau in China. Among them, the first, second, third and fourth major changes have taken place since the formation of the Loess Plateau, and the fifth major change will happen in 100 years. The first major change, which occurred at about 2.50 Ma BP, was a transition from red earth plateau to the Loess Plateau, and reflects the climate from the warm-sub-humid to the alteration between cold-and-dry and warm-and-humid. The driving force of this first major change was climate. The second major change, which took place at about 1.60 Ma BP, was a vital transition of the main rivers in this area from non-existence to existence, and represented an important change on the Loess Plateau's neotectonic uplift from the slow rising to periodically accelerated rising, and making the river's erosion go from feeble to strong. The driving force of the second major change is tectonic uplift. The third major change which occurred at about 150 ka, was a great transition of the Yellow River's inpouring from a lake outlet to a sea outlet. At that time, the Yellow River cut the Sanmen Gorge. The transition led to the transformation of loess material from internal transportation to external transportation. The driving force of the third major change was running water erosion. The fourth one that occurred at about 1.1 ka was a change of the Loess Plateau from natural erosion to erosion accelerated by human influences. The driving force of the fourth major change is mainly human activities. The fifth major change, which is the opposite change to the fourth one, in which the motive power is human activity, too.展开更多
Land urbanization plays an important supporting and restriction role in the rapid and sustainable development of urbanization in China, and it shows distinctive spatial heteroge- neity. Applying urban area as the basi...Land urbanization plays an important supporting and restriction role in the rapid and sustainable development of urbanization in China, and it shows distinctive spatial heteroge- neity. Applying urban area as the basic research unit and urban construction land area as the core indicator, this paper establishes the conceptual framework and calculation method for the quantity and rate of land urbanization process. The study evaluates the spatial differen- tiation pattern of absolute and relative process of land urbanization in 658 cities in China from 2000 to 2010. The spatial distribution of cities with rapid land urbanization process is dis- cussed, and the contribution rate and its spatial heterogeneity of major land use types are examined with the aid of GIS. The main conclusions are as follows: (1) Land urbanization in China shows a clear spatial difference. The greater the city scale, the faster its land urbani- zation. The cities with rapid land urbanization show a significant pattern of central distribution in coastal regions and a scattered distribution in the inland regions. (2) Over the last 10 years, the average quantity of land urbanization in the 656 cities was 3.82 km2, the quantity of land urbanization is differentiated by administrative grade. The average rate of land urbanization was 6.89%, obviously faster than the speed of population urbanization. The rate of land ur- banization reveals a pattern of differentiation between coastal and other cities. (3) In the past 10 years, the two primary land use types associated with land urbanization in China are residential and industrial, with a combined contribution rate of 52.49%. The greater the scale of the city, the more significant the driving effect of industrial land. In small- and medium-scale cities of the western and central regions, the growth of residential land is the primary driver of land urbanization, while in coastal urban agglomerations and cities on important communica- tion axes, the growth of industrial land is the main driver. (4) Overall, urban population ag- glomeration, industrial growth and investment are the three drivers of land urbanization in China, but cities of different scales have different drivers.展开更多
文摘This year marks the40th anniversary of China’s opening up to the world.One of the key decisions during the early period after opening-up was the restoration of the national college entrance exam.As of today,China has produced nearly100million college students and6million overseas students,which provided a solid human resource background for China’s opening-up and economic growth.
文摘On the basis of the geomorphology, paleosol, paleoclimate and loess age, major changes of the Loess Plateau were studied. There are five major changes in the evolution of the Loess Plateau in China. Among them, the first, second, third and fourth major changes have taken place since the formation of the Loess Plateau, and the fifth major change will happen in 100 years. The first major change, which occurred at about 2.50 Ma BP, was a transition from red earth plateau to the Loess Plateau, and reflects the climate from the warm-sub-humid to the alteration between cold-and-dry and warm-and-humid. The driving force of this first major change was climate. The second major change, which took place at about 1.60 Ma BP, was a vital transition of the main rivers in this area from non-existence to existence, and represented an important change on the Loess Plateau's neotectonic uplift from the slow rising to periodically accelerated rising, and making the river's erosion go from feeble to strong. The driving force of the second major change is tectonic uplift. The third major change which occurred at about 150 ka, was a great transition of the Yellow River's inpouring from a lake outlet to a sea outlet. At that time, the Yellow River cut the Sanmen Gorge. The transition led to the transformation of loess material from internal transportation to external transportation. The driving force of the third major change was running water erosion. The fourth one that occurred at about 1.1 ka was a change of the Loess Plateau from natural erosion to erosion accelerated by human influences. The driving force of the fourth major change is mainly human activities. The fifth major change, which is the opposite change to the fourth one, in which the motive power is human activity, too.
基金National Natural Science Foundation of China, No.41401164, No.41430636 The Key Research Program of the Chinese Academy of Sciences, No.KZZD-EW-06.
文摘Land urbanization plays an important supporting and restriction role in the rapid and sustainable development of urbanization in China, and it shows distinctive spatial heteroge- neity. Applying urban area as the basic research unit and urban construction land area as the core indicator, this paper establishes the conceptual framework and calculation method for the quantity and rate of land urbanization process. The study evaluates the spatial differen- tiation pattern of absolute and relative process of land urbanization in 658 cities in China from 2000 to 2010. The spatial distribution of cities with rapid land urbanization process is dis- cussed, and the contribution rate and its spatial heterogeneity of major land use types are examined with the aid of GIS. The main conclusions are as follows: (1) Land urbanization in China shows a clear spatial difference. The greater the city scale, the faster its land urbani- zation. The cities with rapid land urbanization show a significant pattern of central distribution in coastal regions and a scattered distribution in the inland regions. (2) Over the last 10 years, the average quantity of land urbanization in the 656 cities was 3.82 km2, the quantity of land urbanization is differentiated by administrative grade. The average rate of land urbanization was 6.89%, obviously faster than the speed of population urbanization. The rate of land ur- banization reveals a pattern of differentiation between coastal and other cities. (3) In the past 10 years, the two primary land use types associated with land urbanization in China are residential and industrial, with a combined contribution rate of 52.49%. The greater the scale of the city, the more significant the driving effect of industrial land. In small- and medium-scale cities of the western and central regions, the growth of residential land is the primary driver of land urbanization, while in coastal urban agglomerations and cities on important communica- tion axes, the growth of industrial land is the main driver. (4) Overall, urban population ag- glomeration, industrial growth and investment are the three drivers of land urbanization in China, but cities of different scales have different drivers.