The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
This paper presents a comparative investigation into unbalanced magnetic force(UMF)of asymmetric permanent magnet machines without rotor eccentricities,particularly focusing on the difference between internal-and exte...This paper presents a comparative investigation into unbalanced magnetic force(UMF)of asymmetric permanent magnet machines without rotor eccentricities,particularly focusing on the difference between internal-and external-rotor topologies.The asymmetric field distribution results in radial and tangential asymmetric force waves.Although the radial and tangential stresses are in different direction,the UMF components they produce are nearly aligned.The UMF from asymmetric radial force wave can be additive or subtractive to that from asymmetric tangential force wave.Investigation shows that for the same pole slot number combination,if the UMFs due to radial and tangential force waves are additive in internal rotor machine,they are subtractive in the external rotor counterpart,and vice versa.Investigation reveals a general rule determining whether additive or cancelling:for a UMF produced by any two field harmonics,they are additive if the higher order is produced by the outer part outside the airgap,but cancelling if the higher order is produced by the inner part.Therefore,for a machine with pole number 2p=3k+1,they are additive if it is an external-rotor machine,but otherwise subtractive.On the other hand,for a machine with pole number 2p=3k-1,they are subtractive if it is an external-rotor machine,but otherwise additive.For the UMF due to armature reaction only,they are subtractive for external-rotor machines,but otherwise additive.The investigation is carried out by an analytical model and validated by finite element analysis.展开更多
The magnetic microstructures of 2:17 type Sm (Co, Fe, Cu, Zr)z magnets were detected by magnetic force microscopy. Comparing the microstructures of the specimens eoated with and without Ta thin film before and afte...The magnetic microstructures of 2:17 type Sm (Co, Fe, Cu, Zr)z magnets were detected by magnetic force microscopy. Comparing the microstructures of the specimens eoated with and without Ta thin film before and after heat-treatment, it is found that: (a) as a protection layer, Ta coating layer about 20 nm thick can effectively restrain Sm volatilization under high temperature; (b) the stress built in the 2.17 type Sm-Co magnets during specimen preparation only affects some local parts of the domain structures; (c) the magnetic microstructures vary largely for specimens heat-treated at high temperature without Ta film coating due to Sm volatilization. In addition, by comparing with high coercivity Fe-Pt point tips, it is found that the Co-Cr thin-film tips are not suitable for detecting the magnetic microstructures of strong permanent magnets.展开更多
The presented circular current loop model reveals that charged fundamental particles such as the electron consist essentially of electric and magnetic energy. The magnetic properties have the same order of magnitude a...The presented circular current loop model reveals that charged fundamental particles such as the electron consist essentially of electric and magnetic energy. The magnetic properties have the same order of magnitude as the electric ones. The electromagnetic field energy is the origin of the inertial mass. The Higgs boson, existing or not, is not needed to “explain” particle mass. The magnetic moment of fundamental particles is not anomalous! The “anomaly” indicates the existence of a small additional amount of kinetic energy. Thus, fundamental particles are not purely field-like such as photons and not (essentially) mass-like such as atoms, they represent a special kind of matter in between. Their kinetic energy is obviously not due to any relativistic effect but is related to an independent physical law that provides, together with the magnetic energy, the angular momentum exactly to be ħ/2. Fundamental particles are (at least) two-dimensional. In the simplest case their core consists of two concentric, nearly identical current loops. Their relative design details, the “anomaly” factor, and the rotational velocity of the uniformly distributed elementary charge follow from the stability condition, i.e. electric and magnetic force balance, and do not depend on the particle’s rest mass! Fundamental particles are objects of classical physics. Their magnetic forces are the true origin of the weak and strong nuclear interactions. For their explanation bosons and gluons are not needed.展开更多
With the insight provided by a balance equation of electromagnetic momentum, we compare the force on a dielectric slab inside a capacitor with the force on a magnetizable rod inside a solenoid. We conclude that these ...With the insight provided by a balance equation of electromagnetic momentum, we compare the force on a dielectric slab inside a capacitor with the force on a magnetizable rod inside a solenoid. We conclude that these forces are not exactly analogous, as usually thought. We present a device that is a proper analogy of the case of a dielectric slab inside a capacitor. Our analysis shows the significance of the electrostatic and magnetostatic pressures to the understanding of these effects and shows the conceptual differences between both cases.展开更多
This paper analyzes two methods that a magnetic field can be generated, and classifies them under two types: 1) Self-field: a magnetic field can be generated by electrically charged particles move, and its characteris...This paper analyzes two methods that a magnetic field can be generated, and classifies them under two types: 1) Self-field: a magnetic field can be generated by electrically charged particles move, and its characteristic is that it can’t be independent of the electrically charged particles. 2) Radiation field: a magnetic field can be generated by electric field change, and its characteristic is that it independently exists. Lorentz Force Propeller (ab. LFP) utilize the characteristic that radiation magnetic field independently exists. The carrier of the moving electrically charged parti-cles and the device generating the changing electric field are fixed together to form a system. When the moving electrically charged particles under the action of the Lorentz force in the radiation magnetic field, the system achieves propulsion. Same as rocket engine, the LFP achieves propulsion in vacuum. LFP can generate propulsive force only by electric energy and no propellant is required. The main disadvantage of LFP is that the ratio of propulsive force to weight is small.展开更多
Lorentz force velocimetry(LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of wh...Lorentz force velocimetry(LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of whether LFV can work properly under a surrounding external magnetic field(ExMF). Two types of Ex MFs with different magnetic intensities were examined: a magnetic field with a typical order of 0.4 T generated by a permanent magnet(PM) and another generated by an electromagnet(EM) on the order of 2 T. Two forces, including the magnetostatic force between the Ex MF and PM in the LFV, and the Lorentz force generated by the PM in LFV were measured and analyzed in the experiment. In addition,Ex MFs of varying strengths were added to the LFV, and the location of the LFV device in the iron cores of the EM was considered. The experimental outcomes demonstrate that it is possible for a LFV device to operate normally under a moderate Ex MF. However, the magnetostatic force will account for a high proportion of the measured force,thus inhibiting the normal LFV operation, if the Ex MF is too high.展开更多
A new alloy of Nd33.5Dy0.99Febal.Al0.52Cu0.1B1.15 (%, mass fraction) was fabricated by powder metallurgy. The effects of Dy, Al and Cu additions on the microstructure and magnetic properties of sintered NdFeB magnet w...A new alloy of Nd33.5Dy0.99Febal.Al0.52Cu0.1B1.15 (%, mass fraction) was fabricated by powder metallurgy. The effects of Dy, Al and Cu additions on the microstructure and magnetic properties of sintered NdFeB magnet were investigated. The additions of Dy, Al and Cu are effective to refine grains and improve coercivity. Moreover, suitable amounts of Dy, Al and Cu lead to a demagnetization curve with good rectangularity. It is found that the sintered NdFeB magnet has relatively high magnetic performance of Br=12.17 kGs, jHc=13.52 kOe and (BH)max=34.71 MGOe. The sintered NdFeB sample was examined by magnetic force microscope which revealed the domain structures at the surface. It is revealed that the mean Nd2Fe14B grain size is significantly larger than the average scale of the magnetic contrast. An explanation about this is that most Nd2Fe14B grains in sintered NdFeB alloy are dominated with the multidomain structures when the magnet is in thermally demagnetization state.展开更多
After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is ...After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r<sup>3</sup>. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.展开更多
A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of ...A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed. Key words PMSM (permanent magnetic synchronous motor) - phase decoupling - optimum design of back EMF(electric motive force)展开更多
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 51677169 and 51637009.
文摘This paper presents a comparative investigation into unbalanced magnetic force(UMF)of asymmetric permanent magnet machines without rotor eccentricities,particularly focusing on the difference between internal-and external-rotor topologies.The asymmetric field distribution results in radial and tangential asymmetric force waves.Although the radial and tangential stresses are in different direction,the UMF components they produce are nearly aligned.The UMF from asymmetric radial force wave can be additive or subtractive to that from asymmetric tangential force wave.Investigation shows that for the same pole slot number combination,if the UMFs due to radial and tangential force waves are additive in internal rotor machine,they are subtractive in the external rotor counterpart,and vice versa.Investigation reveals a general rule determining whether additive or cancelling:for a UMF produced by any two field harmonics,they are additive if the higher order is produced by the outer part outside the airgap,but cancelling if the higher order is produced by the inner part.Therefore,for a machine with pole number 2p=3k+1,they are additive if it is an external-rotor machine,but otherwise subtractive.On the other hand,for a machine with pole number 2p=3k-1,they are subtractive if it is an external-rotor machine,but otherwise additive.For the UMF due to armature reaction only,they are subtractive for external-rotor machines,but otherwise additive.The investigation is carried out by an analytical model and validated by finite element analysis.
文摘The magnetic microstructures of 2:17 type Sm (Co, Fe, Cu, Zr)z magnets were detected by magnetic force microscopy. Comparing the microstructures of the specimens eoated with and without Ta thin film before and after heat-treatment, it is found that: (a) as a protection layer, Ta coating layer about 20 nm thick can effectively restrain Sm volatilization under high temperature; (b) the stress built in the 2.17 type Sm-Co magnets during specimen preparation only affects some local parts of the domain structures; (c) the magnetic microstructures vary largely for specimens heat-treated at high temperature without Ta film coating due to Sm volatilization. In addition, by comparing with high coercivity Fe-Pt point tips, it is found that the Co-Cr thin-film tips are not suitable for detecting the magnetic microstructures of strong permanent magnets.
文摘The presented circular current loop model reveals that charged fundamental particles such as the electron consist essentially of electric and magnetic energy. The magnetic properties have the same order of magnitude as the electric ones. The electromagnetic field energy is the origin of the inertial mass. The Higgs boson, existing or not, is not needed to “explain” particle mass. The magnetic moment of fundamental particles is not anomalous! The “anomaly” indicates the existence of a small additional amount of kinetic energy. Thus, fundamental particles are not purely field-like such as photons and not (essentially) mass-like such as atoms, they represent a special kind of matter in between. Their kinetic energy is obviously not due to any relativistic effect but is related to an independent physical law that provides, together with the magnetic energy, the angular momentum exactly to be ħ/2. Fundamental particles are (at least) two-dimensional. In the simplest case their core consists of two concentric, nearly identical current loops. Their relative design details, the “anomaly” factor, and the rotational velocity of the uniformly distributed elementary charge follow from the stability condition, i.e. electric and magnetic force balance, and do not depend on the particle’s rest mass! Fundamental particles are objects of classical physics. Their magnetic forces are the true origin of the weak and strong nuclear interactions. For their explanation bosons and gluons are not needed.
文摘With the insight provided by a balance equation of electromagnetic momentum, we compare the force on a dielectric slab inside a capacitor with the force on a magnetizable rod inside a solenoid. We conclude that these forces are not exactly analogous, as usually thought. We present a device that is a proper analogy of the case of a dielectric slab inside a capacitor. Our analysis shows the significance of the electrostatic and magnetostatic pressures to the understanding of these effects and shows the conceptual differences between both cases.
文摘This paper analyzes two methods that a magnetic field can be generated, and classifies them under two types: 1) Self-field: a magnetic field can be generated by electrically charged particles move, and its characteristic is that it can’t be independent of the electrically charged particles. 2) Radiation field: a magnetic field can be generated by electric field change, and its characteristic is that it independently exists. Lorentz Force Propeller (ab. LFP) utilize the characteristic that radiation magnetic field independently exists. The carrier of the moving electrically charged parti-cles and the device generating the changing electric field are fixed together to form a system. When the moving electrically charged particles under the action of the Lorentz force in the radiation magnetic field, the system achieves propulsion. Same as rocket engine, the LFP achieves propulsion in vacuum. LFP can generate propulsive force only by electric energy and no propellant is required. The main disadvantage of LFP is that the ratio of propulsive force to weight is small.
基金supported by the National Natural Science Foundation of China(No.51374190)the Major Equipment Fund of Chinese Academy of Sciences(No.YZ201567)
文摘Lorentz force velocimetry(LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of whether LFV can work properly under a surrounding external magnetic field(ExMF). Two types of Ex MFs with different magnetic intensities were examined: a magnetic field with a typical order of 0.4 T generated by a permanent magnet(PM) and another generated by an electromagnet(EM) on the order of 2 T. Two forces, including the magnetostatic force between the Ex MF and PM in the LFV, and the Lorentz force generated by the PM in LFV were measured and analyzed in the experiment. In addition,Ex MFs of varying strengths were added to the LFV, and the location of the LFV device in the iron cores of the EM was considered. The experimental outcomes demonstrate that it is possible for a LFV device to operate normally under a moderate Ex MF. However, the magnetostatic force will account for a high proportion of the measured force,thus inhibiting the normal LFV operation, if the Ex MF is too high.
基金Project supported bythe Important Science and Technology Project Foundation of Anhui Province duringthe Eleventh Five-Year Plan (06012031A)
文摘A new alloy of Nd33.5Dy0.99Febal.Al0.52Cu0.1B1.15 (%, mass fraction) was fabricated by powder metallurgy. The effects of Dy, Al and Cu additions on the microstructure and magnetic properties of sintered NdFeB magnet were investigated. The additions of Dy, Al and Cu are effective to refine grains and improve coercivity. Moreover, suitable amounts of Dy, Al and Cu lead to a demagnetization curve with good rectangularity. It is found that the sintered NdFeB magnet has relatively high magnetic performance of Br=12.17 kGs, jHc=13.52 kOe and (BH)max=34.71 MGOe. The sintered NdFeB sample was examined by magnetic force microscope which revealed the domain structures at the surface. It is revealed that the mean Nd2Fe14B grain size is significantly larger than the average scale of the magnetic contrast. An explanation about this is that most Nd2Fe14B grains in sintered NdFeB alloy are dominated with the multidomain structures when the magnet is in thermally demagnetization state.
文摘After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r<sup>3</sup>. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.
文摘A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed. Key words PMSM (permanent magnetic synchronous motor) - phase decoupling - optimum design of back EMF(electric motive force)