It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex...It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.展开更多
This article examines the issue of future directions of climate engineering in the light of the consequences of the Earth’s expansion process. One of the directions of climate engineering should be the study of seism...This article examines the issue of future directions of climate engineering in the light of the consequences of the Earth’s expansion process. One of the directions of climate engineering should be the study of seismic problems, because the state of the geosphere affects not only the atmosphere, but also the processes taking place in the bowels of the planet. If we accept the hypothesis of an expanding Earth [1], then rapid changes in meteorological conditions on the planet will become clear, and the secrets of earthquake processes will come out of the shadow of existing misconceptions among most geophysicists of the world and scientists will understand the mechanisms of energy formation of seismic processes. But, there are multiple arguments of world geophysicists testifying against the hypothesis of an expanding Earth, and in their opinion, scientists supporting this hypothesis allegedly did not provide mechanisms for the expansion of the planet [2]. In turn, the development of the theory of plate tectonics and the alleged discovery of the processes of formation of subduction zones led to the recognition of the hypothesis of plate tectonics by the world scientific community as the main theory of geophysics and sent science straight into a dead end of false conclusions, from which modern geophysics has not found a way out. And it was enough just to listen to A. Einstein and a march into the jungle of unfounded fantasies could be very easily avoided. Everything is extremely simple, but this makes it obvious and incomprehensible to most geophysicists that energy is matter, and matter is energy. For example, only the total amount of solar energy that our planet absorbs, including the atmosphere, land surface, and mirrors of the seas and oceans, is ~3,850,000 EJ per year [3]. And this is without taking into account the energy supply from space in the form of highly energetic particles. This scientific fact, which cannot be denied, must inevitably lead to the formation of matter and, consequently, to the expansion of the planet, because any high school student knows the physical concept of the equivalence of mass and energy arising from the theory of relativity A. Einstein [4], according to which the energy of a body at rest is equivalent to its mass multiplied by the square of the speed of light in a vacuum: E = mc2. That is, whether we like it or not, but the energy of the Sun and Space, as it has been transformed for billions of years into matter familiar to us: rocks, gases, minerals, fluids, will be transformed, in accordance with the laws of science. Otherwise, all the proponents of the expanding Earth hypothesis will have to declare that Mr. Einstein’s formula E = mc2 does not correspond to reality, and recognize the great scientist as a falsifier. Therefore, no matter what far-fetched arguments in the form of mythical subduction zones geophysicists give, no matter what “exotic laws of local significance” they invent, no matter how cynically they mock the fundamental laws of science—all energy entering the planet is necessarily processed and will be processed into matter with an increase in the volume of the planet. Without any exceptions! Only one biochemical process of photosynthesis continuously occurring in algae in one year brings ~3.6 × 1011 tons of oxygen into the Earth’s atmosphere [5], which significantly exceeds the amount of hydrogen and helium “immigrating” into space. Even if we take a geological epoch of one hundred million years, the evidence of an increase in the volume of the Earth only due to oxygen (3.6 × 1011 × 107 tons) becomes quite convincing. the surface area of the Earth is constantly increasing, then the processes of expansion of the planet increase exponentially, which inevitably leads to an increase in seismic activity and volcanic activity, and the increase in the volume of the planet itself serves as a lever for changing the meteorological conditions of the planet’s existence and one of the sources of seismic energy formation. In this article, we will consider seismic processes in the light of the expanding Earth hypothesis.展开更多
For earthquakes(ML≥2.0) that occurred from January 2006 to October 2018 around the Ms5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen,Sichuan province,China,we statistically investigated the correlation...For earthquakes(ML≥2.0) that occurred from January 2006 to October 2018 around the Ms5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen,Sichuan province,China,we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the Ms5.7 Xingwen event.The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation.We investigated the spatial distribution of Pvalues in the region around the epicenter of the Ms5.7 Xingwen event,and obtained a result exhibiting a extremely low-P-value region.The松5.7 event occurred inside near the northern boundary of this region.Furthermore,we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values(less that 0.1%),i.e.,significant correlation,were calculated for earthquakes that occurred before the胚5.7 Xingwen earthquake.Among sixty・one earthquakes with the lowest P-value,occurred from May 2014 to April 2018,a vast majority of them occurred during the acceleration of Earth's rotation.The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the Ms5.7 Xingwen earthquake.展开更多
The hourly data of the vertical Z and the horizontal H components of 37 ground-based DC-ULF geomagnetic stations are examined during 20 April-12 May 2008. On 9 May 2008, three days before the Wenchuan MS 8.0 shock, an...The hourly data of the vertical Z and the horizontal H components of 37 ground-based DC-ULF geomagnetic stations are examined during 20 April-12 May 2008. On 9 May 2008, three days before the Wenchuan MS 8.0 shock, anomalies-a double low-point and a decreased amplitude-are registered on the curves of the Z component at 25 stations in a large-scale area surrounding the Wenchuan epicentral area. The H component shows none of the double low-point phenomenon but does exhibit a reduced magnitude at the same time. The geomagnetic index Kp is also examined and indicates that the anomalies appear at a solar quiet period. The appearing time shift(Tzs) between the first low-point on May 9 and the minimum point occurring time of May 1-5, 2008 is also checked.The results show that Tzs is on the order of 1-2 hours earlier or later than usual and there is a 2-6 hours’ gap between these two lowpoints. However, there is still a transition area which includes the epicenter where Tzs=0. Variation amplitude examined on vertical Z increases as the distance from the epicenter decreases. An Earth-air-ionosphere model has been employed to investigate a possible mechanism of this phenomenon and positive results have been unexpectedly attained. All these above-related results tend to prove that the variations of the Z and H on May 9, 2008 during the solar quiet period are probably associated with the forthcoming Wenchuan MS 8.0 earthquake.展开更多
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is...Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.展开更多
Modern geodetic technologies such as high-precision ground gravity measurements,satellite gravity measurements,the global navigation satellite system,remote sensing methods,etc.provide rich observation data for monito...Modern geodetic technologies such as high-precision ground gravity measurements,satellite gravity measurements,the global navigation satellite system,remote sensing methods,etc.provide rich observation data for monitoring various geodynamic processes of the global Earth and its surface.The 19th International Symposium on Geodynamics and Earth Tides brought together scientific researchers from 26 countries around the world,shared the application of various measurements in different geoscience issues,covering Earth tidal deformation,oceanic and atmospheric loading effects,earthquake cycle,hydrology,Earth rotation changes,etc.,and provided a precious exchange platform for global peers.展开更多
There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its sur...There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth's free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5- 6.0) can also cause Earth's free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.展开更多
In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland...In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland stations, we discussed some methods to distinguish different kinds of microseisms, and speculated that a pre-earthquake typhoon might have caused a "mainland-originated microseism" which in turn trig- gered the earthquake.展开更多
The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides,resulting in massive loss of people’s life and property.However,integrated investigations and results regarding the landslides triggered by th...The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides,resulting in massive loss of people’s life and property.However,integrated investigations and results regarding the landslides triggered by this earthquake are rare;such situation hinders the deep understanding of these landslides such as scale,extent,and distribution.With the support of Google Earth software,this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake(VIII-XI degree)using the artificial visual interpretation method,and further analyze the spatial distribution and impact factors of these landslides.The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone,with a total landslide area of 58.6 km^2.The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle.Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation,slope gradient,slope direction,strata,seismic intensity,faults and rivers.The elevation of 2000-2800 m is the high-incidence interval of the landslide.The landslide density is larger with a higher slope gradient.East and west directions are the dominant sliding directions.The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides.The X intensity zone triggered the most landslides.In addition,landslides often occur in regions near rivers and faults.This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.展开更多
The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip...The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ = η/μ is 2.6 years, and the effective viscosity η is about 10 18 Pa·s.展开更多
The mode serials of the Earth’s free oscillation provide some important information on the Earth’s deep structure and superconducting gravimeters (SG) can investigate the phenomena of the Earth’s free oscillation...The mode serials of the Earth’s free oscillation provide some important information on the Earth’s deep structure and superconducting gravimeters (SG) can investigate the phenomena of the Earth’s free oscillations with high accuracy. The great Sumatra-Andaman earthquake fully excited the Earth’s free oscillations and these signals were perfectly recorded by five superconducting gravimeters in the globe. After the pre-treatment and spectral analysis on the SG observation data, we obtained the experimented mode serials of the Earth’s free oscillations consisting of 147 modes with GGP station data. These observed modes were themselves some new important data for the study of the Earth’s deep structure. On the basis of the discussions on some checked inner-core-sensitive modes, we distinguished three layers from the inner core, and the boundary of the upper layer was compatible with the formerly known transition zone in the inner core based on seismic body waves and supported that there were the hemispherical variation and very lower shear velocity zone in the lower inner core.展开更多
Earthquakes heavily deform the crust in the vicinity of the fault, which leads to mass redistribution in the earth interior. Then it will produce the change of the Earth's rotation ( polar motion and length of day)...Earthquakes heavily deform the crust in the vicinity of the fault, which leads to mass redistribution in the earth interior. Then it will produce the change of the Earth's rotation ( polar motion and length of day) due to the change of Earth inertial moment. This paper adopts the elastic dislocation to compute the co-seismic polar motion and variation in length of day (LOD) caused by the 2011 Sumatra earthquake. The Earth's rota- tional axis shifted about 1 mas and this earthquake decreased the length of day of 1 p,s, indicating the tendency of earthquakes make the Earth rounder and to pull the mass toward the centre of the Earth. The result of varia- tion in length of day is one order of magnitude smaller than the observed results that are available. We also compared the results of three fault models and find the co-seismic change is depended on the fault model.展开更多
Through systematically summarizing the observational data of earth resistivity during 26 years from nearly a hundred stations in China, the author found that the pattern of the earth resistivity (ρs) tendency variati...Through systematically summarizing the observational data of earth resistivity during 26 years from nearly a hundred stations in China, the author found that the pattern of the earth resistivity (ρs) tendency variations,based on monthly average data, could be divided into five types, three types of which were defined as anomalous variation, which have different qualitative and quantitative characteristics and different relations with earthquakes as well.The first type of tendency variation called “funnel” is related to strong earthquakes, the Second type called “scoop” has good corresponding relation with moderate earthquakes, and the third type called “tilt” has no relation with earthquakes. Preliminary discussions about the relations between the three types of ρs tendency variation patterns and earthquakes are made in this paper, according to the experimental results of pressed rocks. It is concluded that the different patterns of ρs tendency variation actually reflect the different stress conditions of underground soil-rock layers: the “funnel” type reflects high stress status, the “scoop” type shows moderate stress condition and the “tilt” type is related to stress relief. All of such knowledges mentioned above are very useful in making accurate medium-term earthquake prediction.展开更多
The observatory network of the Crustal Deformation China Seismological Bureau was equipped with vertical pendulum tiltmeter,borehole tiltmeter,tunnel extension meters,multi-component borehole strainmeter,body strainme...The observatory network of the Crustal Deformation China Seismological Bureau was equipped with vertical pendulum tiltmeter,borehole tiltmeter,tunnel extension meters,multi-component borehole strainmeter,body strainmeter and other tilt and strain observation instruments.All of these instruments have recorded the Earth’s free oscillation excited by the Japan Mw9.0 Earthquake.By analyzing those observations,all of the spheroidal oscillation modes(0S3-0S30)and toroidal oscillation modes(0T3-0T20)excited by the Japan Mw9.0 Earthquake were detected in this paper.In addition,comparing the different observation results which obtained by those instruments,we revealed their capacity to observe different kinds of oscillation and different frequency band modes,and analyzed report the reason.We found that the body strainmeter and the vertical pendulum tiltmeter have better observing results for spheroidal oscillation.Because of high noise in low frequency band,the borehole tiltmeter cannot observe the low-order spheroidal oscillation.In terms of observing the toroidal oscillation,the multi-component borehole strainmeter got a best result.The vertical pendulum tiltmeter observes a few toroidal oscillation modes,and the tunnel extension meters can only observe some low-order modes.展开更多
It is already well known that the “when, where and how strong” earthquake prediction problem cannot be solved by only analyzing the database from former earthquakes. A possible solution to this problem is proposed h...It is already well known that the “when, where and how strong” earthquake prediction problem cannot be solved by only analyzing the database from former earthquakes. A possible solution to this problem is proposed herein based on the analysis of the physicochemical processes as participants in earthquake preparation and on the characteristic rate of reflection of these processes on the Earth’s surface. The proposed procedure includes monitoring of correlation of electromagnetic fields variations with tidal waves.?This solution provides a way of selecting a complex of reliable earthquake precursors using the Inverse Problem Method for earthquakes which will occur in the region around the monitoring point (radial distance ≈ 700 km) in the next seven-day period [1].展开更多
On July 29, 2021, a large earthquake of MW8.2 occurred south of the Alaska Peninsula. To investigate the spatial-temporal changes of crustal stress in the earthquake-stricken area before this event, we selected 159 ea...On July 29, 2021, a large earthquake of MW8.2 occurred south of the Alaska Peninsula. To investigate the spatial-temporal changes of crustal stress in the earthquake-stricken area before this event, we selected 159 earthquakes of 4.7 ≤ MW ≤ 6.9 that occurred in the epicentral region and its surroundings between January 1980 and June 2021 to study the temporal variation and spatial distribution of their apparent stress. In addition, we analyzed the correlation between seismic activities and Earth’s rotation and explored the seismogenic process of this earthquake. The crustal stress rose from January 2008 to December 2016. This period was followed by a sub-instability stage from January 2017 until the occurrence of the MW8.2 earthquake. The average rate of apparent stress change in the first five years of the stress increase period was roughly 2.3 times that in the last four years. The lateral distribution of the apparent stress shows that the areas with apparent stress greater than 1.0 MPa exhibited an expanding trend during the seismogenic process. The maximum apparent stress was located at the earthquake epicenter during the last four years. The distribution of the apparent stress in the E-W vertical cross section revealed that an apparent stress gap formed around the hypocenter during the first five years of the stress increase period, surrounded by areas of relatively high apparent stress. After the Alaska earthquake, most parts of this gap were filled in by aftershocks. The seismic activities during the sub-instability stage exhibited a significant correlation with Earth’s rotation.展开更多
The relationships between Earth's rotation and the 1975 Haicheng, Liaoning Ms7.3 earthquake, 2008 Wenchuan, Sichuan Ms8.0 earthquake and the 2004 Sumatra Msg. 0 earthquake, as well as moderate-small earthquakes occur...The relationships between Earth's rotation and the 1975 Haicheng, Liaoning Ms7.3 earthquake, 2008 Wenchuan, Sichuan Ms8.0 earthquake and the 2004 Sumatra Msg. 0 earthquake, as well as moderate-small earthquakes occurring around the epicenter regions prior to them are investigated in this study. The obtained results could benefit the further understanding of the relationship between the Earth's rotation and earthquakes.展开更多
Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study i...Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.展开更多
There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very...There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we present a possible use of VLF/LF (very low frequency (3-30 kHz)/low frequency (30-300 kHz)) radio sounding of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews, we first show some pioneering results for the Kobe EQ and we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), medium-distance (6-8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (the effect of atmospheric gravity waves, the effect of Earth's tides, etc.), and the mechanism of lithosphere-atmosphere-ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetic study.展开更多
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km a...Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42174101,41974023)+1 种基金the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)(Germany)The Offshore International Science and Technology Cooperation Center of Frontier Technology of Geodesy。
文摘It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.
文摘This article examines the issue of future directions of climate engineering in the light of the consequences of the Earth’s expansion process. One of the directions of climate engineering should be the study of seismic problems, because the state of the geosphere affects not only the atmosphere, but also the processes taking place in the bowels of the planet. If we accept the hypothesis of an expanding Earth [1], then rapid changes in meteorological conditions on the planet will become clear, and the secrets of earthquake processes will come out of the shadow of existing misconceptions among most geophysicists of the world and scientists will understand the mechanisms of energy formation of seismic processes. But, there are multiple arguments of world geophysicists testifying against the hypothesis of an expanding Earth, and in their opinion, scientists supporting this hypothesis allegedly did not provide mechanisms for the expansion of the planet [2]. In turn, the development of the theory of plate tectonics and the alleged discovery of the processes of formation of subduction zones led to the recognition of the hypothesis of plate tectonics by the world scientific community as the main theory of geophysics and sent science straight into a dead end of false conclusions, from which modern geophysics has not found a way out. And it was enough just to listen to A. Einstein and a march into the jungle of unfounded fantasies could be very easily avoided. Everything is extremely simple, but this makes it obvious and incomprehensible to most geophysicists that energy is matter, and matter is energy. For example, only the total amount of solar energy that our planet absorbs, including the atmosphere, land surface, and mirrors of the seas and oceans, is ~3,850,000 EJ per year [3]. And this is without taking into account the energy supply from space in the form of highly energetic particles. This scientific fact, which cannot be denied, must inevitably lead to the formation of matter and, consequently, to the expansion of the planet, because any high school student knows the physical concept of the equivalence of mass and energy arising from the theory of relativity A. Einstein [4], according to which the energy of a body at rest is equivalent to its mass multiplied by the square of the speed of light in a vacuum: E = mc2. That is, whether we like it or not, but the energy of the Sun and Space, as it has been transformed for billions of years into matter familiar to us: rocks, gases, minerals, fluids, will be transformed, in accordance with the laws of science. Otherwise, all the proponents of the expanding Earth hypothesis will have to declare that Mr. Einstein’s formula E = mc2 does not correspond to reality, and recognize the great scientist as a falsifier. Therefore, no matter what far-fetched arguments in the form of mythical subduction zones geophysicists give, no matter what “exotic laws of local significance” they invent, no matter how cynically they mock the fundamental laws of science—all energy entering the planet is necessarily processed and will be processed into matter with an increase in the volume of the planet. Without any exceptions! Only one biochemical process of photosynthesis continuously occurring in algae in one year brings ~3.6 × 1011 tons of oxygen into the Earth’s atmosphere [5], which significantly exceeds the amount of hydrogen and helium “immigrating” into space. Even if we take a geological epoch of one hundred million years, the evidence of an increase in the volume of the Earth only due to oxygen (3.6 × 1011 × 107 tons) becomes quite convincing. the surface area of the Earth is constantly increasing, then the processes of expansion of the planet increase exponentially, which inevitably leads to an increase in seismic activity and volcanic activity, and the increase in the volume of the planet itself serves as a lever for changing the meteorological conditions of the planet’s existence and one of the sources of seismic energy formation. In this article, we will consider seismic processes in the light of the expanding Earth hypothesis.
基金supported by National Key R&D Program of China (No. 2018YFC1503405)
文摘For earthquakes(ML≥2.0) that occurred from January 2006 to October 2018 around the Ms5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen,Sichuan province,China,we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the Ms5.7 Xingwen event.The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation.We investigated the spatial distribution of Pvalues in the region around the epicenter of the Ms5.7 Xingwen event,and obtained a result exhibiting a extremely low-P-value region.The松5.7 event occurred inside near the northern boundary of this region.Furthermore,we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values(less that 0.1%),i.e.,significant correlation,were calculated for earthquakes that occurred before the胚5.7 Xingwen earthquake.Among sixty・one earthquakes with the lowest P-value,occurred from May 2014 to April 2018,a vast majority of them occurred during the acceleration of Earth's rotation.The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the Ms5.7 Xingwen earthquake.
基金supported by NSFC (National Natural Science Foundation of China) under grant agreement No.41774084National Key R & D Program of China under grant No.2018YFC 1503506
文摘The hourly data of the vertical Z and the horizontal H components of 37 ground-based DC-ULF geomagnetic stations are examined during 20 April-12 May 2008. On 9 May 2008, three days before the Wenchuan MS 8.0 shock, anomalies-a double low-point and a decreased amplitude-are registered on the curves of the Z component at 25 stations in a large-scale area surrounding the Wenchuan epicentral area. The H component shows none of the double low-point phenomenon but does exhibit a reduced magnitude at the same time. The geomagnetic index Kp is also examined and indicates that the anomalies appear at a solar quiet period. The appearing time shift(Tzs) between the first low-point on May 9 and the minimum point occurring time of May 1-5, 2008 is also checked.The results show that Tzs is on the order of 1-2 hours earlier or later than usual and there is a 2-6 hours’ gap between these two lowpoints. However, there is still a transition area which includes the epicenter where Tzs=0. Variation amplitude examined on vertical Z increases as the distance from the epicenter decreases. An Earth-air-ionosphere model has been employed to investigate a possible mechanism of this phenomenon and positive results have been unexpectedly attained. All these above-related results tend to prove that the variations of the Z and H on May 9, 2008 during the solar quiet period are probably associated with the forthcoming Wenchuan MS 8.0 earthquake.
文摘Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.
基金Major Program of the National Natural Science Foundation of China(42192535).
文摘Modern geodetic technologies such as high-precision ground gravity measurements,satellite gravity measurements,the global navigation satellite system,remote sensing methods,etc.provide rich observation data for monitoring various geodynamic processes of the global Earth and its surface.The 19th International Symposium on Geodynamics and Earth Tides brought together scientific researchers from 26 countries around the world,shared the application of various measurements in different geoscience issues,covering Earth tidal deformation,oceanic and atmospheric loading effects,earthquake cycle,hydrology,Earth rotation changes,etc.,and provided a precious exchange platform for global peers.
基金supported by Project of Ministry of Science and Technology:"Scientific drilling in Wenchuan earthquake fault zone"and Project of China Geological Survey(1212010916064)
文摘There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth's free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5- 6.0) can also cause Earth's free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.
基金supported by the National Natural Science Foundation of China(90814009)Quality Control’s Special Funds for Scientific Researchon Public Causes(10-215)National Key Technology Research and Development Program(2008BAC35B05)
文摘In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland stations, we discussed some methods to distinguish different kinds of microseisms, and speculated that a pre-earthquake typhoon might have caused a "mainland-originated microseism" which in turn trig- gered the earthquake.
基金sponsored by the the National key Research and Development Program of China(2018FYC1504703)Basic Scientific Fund of the Institute of Geology,China Earthquake Administration(IGCEA1604)the National Natural Science Foundation of China(41661144037)。
文摘The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides,resulting in massive loss of people’s life and property.However,integrated investigations and results regarding the landslides triggered by this earthquake are rare;such situation hinders the deep understanding of these landslides such as scale,extent,and distribution.With the support of Google Earth software,this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake(VIII-XI degree)using the artificial visual interpretation method,and further analyze the spatial distribution and impact factors of these landslides.The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone,with a total landslide area of 58.6 km^2.The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle.Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation,slope gradient,slope direction,strata,seismic intensity,faults and rivers.The elevation of 2000-2800 m is the high-incidence interval of the landslide.The landslide density is larger with a higher slope gradient.East and west directions are the dominant sliding directions.The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides.The X intensity zone triggered the most landslides.In addition,landslides often occur in regions near rivers and faults.This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.
文摘The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ = η/μ is 2.6 years, and the effective viscosity η is about 10 18 Pa·s.
基金supported jointly by the National Natural Science Foundation of China (Nos. 40974046,90814009 and 40730316)the Natural Science Foundation of Hubei Province (No. 2008CDB389)the Knowledge Innovation Project of Chinese Academy of Sciences (No. KZCX2-YW-133)
文摘The mode serials of the Earth’s free oscillation provide some important information on the Earth’s deep structure and superconducting gravimeters (SG) can investigate the phenomena of the Earth’s free oscillations with high accuracy. The great Sumatra-Andaman earthquake fully excited the Earth’s free oscillations and these signals were perfectly recorded by five superconducting gravimeters in the globe. After the pre-treatment and spectral analysis on the SG observation data, we obtained the experimented mode serials of the Earth’s free oscillations consisting of 147 modes with GGP station data. These observed modes were themselves some new important data for the study of the Earth’s deep structure. On the basis of the discussions on some checked inner-core-sensitive modes, we distinguished three layers from the inner core, and the boundary of the upper layer was compatible with the formerly known transition zone in the inner core based on seismic body waves and supported that there were the hemispherical variation and very lower shear velocity zone in the lower inner core.
基金supported by the National Natural Science Foundation of China(41174063)
文摘Earthquakes heavily deform the crust in the vicinity of the fault, which leads to mass redistribution in the earth interior. Then it will produce the change of the Earth's rotation ( polar motion and length of day) due to the change of Earth inertial moment. This paper adopts the elastic dislocation to compute the co-seismic polar motion and variation in length of day (LOD) caused by the 2011 Sumatra earthquake. The Earth's rota- tional axis shifted about 1 mas and this earthquake decreased the length of day of 1 p,s, indicating the tendency of earthquakes make the Earth rounder and to pull the mass toward the centre of the Earth. The result of varia- tion in length of day is one order of magnitude smaller than the observed results that are available. We also compared the results of three fault models and find the co-seismic change is depended on the fault model.
文摘Through systematically summarizing the observational data of earth resistivity during 26 years from nearly a hundred stations in China, the author found that the pattern of the earth resistivity (ρs) tendency variations,based on monthly average data, could be divided into five types, three types of which were defined as anomalous variation, which have different qualitative and quantitative characteristics and different relations with earthquakes as well.The first type of tendency variation called “funnel” is related to strong earthquakes, the Second type called “scoop” has good corresponding relation with moderate earthquakes, and the third type called “tilt” has no relation with earthquakes. Preliminary discussions about the relations between the three types of ρs tendency variation patterns and earthquakes are made in this paper, according to the experimental results of pressed rocks. It is concluded that the different patterns of ρs tendency variation actually reflect the different stress conditions of underground soil-rock layers: the “funnel” type reflects high stress status, the “scoop” type shows moderate stress condition and the “tilt” type is related to stress relief. All of such knowledges mentioned above are very useful in making accurate medium-term earthquake prediction.
基金supported by China seismological bureau special scientific research(17A18ZX085)
文摘The observatory network of the Crustal Deformation China Seismological Bureau was equipped with vertical pendulum tiltmeter,borehole tiltmeter,tunnel extension meters,multi-component borehole strainmeter,body strainmeter and other tilt and strain observation instruments.All of these instruments have recorded the Earth’s free oscillation excited by the Japan Mw9.0 Earthquake.By analyzing those observations,all of the spheroidal oscillation modes(0S3-0S30)and toroidal oscillation modes(0T3-0T20)excited by the Japan Mw9.0 Earthquake were detected in this paper.In addition,comparing the different observation results which obtained by those instruments,we revealed their capacity to observe different kinds of oscillation and different frequency band modes,and analyzed report the reason.We found that the body strainmeter and the vertical pendulum tiltmeter have better observing results for spheroidal oscillation.Because of high noise in low frequency band,the borehole tiltmeter cannot observe the low-order spheroidal oscillation.In terms of observing the toroidal oscillation,the multi-component borehole strainmeter got a best result.The vertical pendulum tiltmeter observes a few toroidal oscillation modes,and the tunnel extension meters can only observe some low-order modes.
文摘It is already well known that the “when, where and how strong” earthquake prediction problem cannot be solved by only analyzing the database from former earthquakes. A possible solution to this problem is proposed herein based on the analysis of the physicochemical processes as participants in earthquake preparation and on the characteristic rate of reflection of these processes on the Earth’s surface. The proposed procedure includes monitoring of correlation of electromagnetic fields variations with tidal waves.?This solution provides a way of selecting a complex of reliable earthquake precursors using the Inverse Problem Method for earthquakes which will occur in the region around the monitoring point (radial distance ≈ 700 km) in the next seven-day period [1].
基金supported by the the Special fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB22Z04).
文摘On July 29, 2021, a large earthquake of MW8.2 occurred south of the Alaska Peninsula. To investigate the spatial-temporal changes of crustal stress in the earthquake-stricken area before this event, we selected 159 earthquakes of 4.7 ≤ MW ≤ 6.9 that occurred in the epicentral region and its surroundings between January 1980 and June 2021 to study the temporal variation and spatial distribution of their apparent stress. In addition, we analyzed the correlation between seismic activities and Earth’s rotation and explored the seismogenic process of this earthquake. The crustal stress rose from January 2008 to December 2016. This period was followed by a sub-instability stage from January 2017 until the occurrence of the MW8.2 earthquake. The average rate of apparent stress change in the first five years of the stress increase period was roughly 2.3 times that in the last four years. The lateral distribution of the apparent stress shows that the areas with apparent stress greater than 1.0 MPa exhibited an expanding trend during the seismogenic process. The maximum apparent stress was located at the earthquake epicenter during the last four years. The distribution of the apparent stress in the E-W vertical cross section revealed that an apparent stress gap formed around the hypocenter during the first five years of the stress increase period, surrounded by areas of relatively high apparent stress. After the Alaska earthquake, most parts of this gap were filled in by aftershocks. The seismic activities during the sub-instability stage exhibited a significant correlation with Earth’s rotation.
基金sponsored by the Teacher's Scientific Research Fund of the China Earthquake Administration(20090103)
文摘The relationships between Earth's rotation and the 1975 Haicheng, Liaoning Ms7.3 earthquake, 2008 Wenchuan, Sichuan Ms8.0 earthquake and the 2004 Sumatra Msg. 0 earthquake, as well as moderate-small earthquakes occurring around the epicenter regions prior to them are investigated in this study. The obtained results could benefit the further understanding of the relationship between the Earth's rotation and earthquakes.
基金Special Scientific Found for Seismic Industry Under Grant No.201008005
文摘Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.
文摘There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we present a possible use of VLF/LF (very low frequency (3-30 kHz)/low frequency (30-300 kHz)) radio sounding of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews, we first show some pioneering results for the Kobe EQ and we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), medium-distance (6-8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (the effect of atmospheric gravity waves, the effect of Earth's tides, etc.), and the mechanism of lithosphere-atmosphere-ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetic study.
基金This study was supported financially by the National Key R&D Program of China(No.2018YFC1503704)the National Natural Science Foundation of China(No.41874003)。
文摘Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.