期刊文献+
共找到987篇文章
< 1 2 50 >
每页显示 20 50 100
Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes
1
作者 Arnaud Louis Sountong-Noma Ouedraogo Césaire Hema +2 位作者 Sjoerd Moustapha N’guiro Philbert Nshimiyimana Adamah Messan 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期1-16,共16页
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid... Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material. 展开更多
关键词 Compressed earth Blocks Hot and Dry climate Thermal Comfort Architectural Optimization of Thermal Models Cement Blocks Empirical Validation
下载PDF
Climate Changes and Sustainability
2
作者 Kholoud Z. Ghanem 《Open Journal of Ecology》 2024年第1期17-53,共37页
Climate change is the phrase used to describe long-term changes in temperatures and weather patterns. Changes in the atmosphere and their interactions with diverse geologic, chemical, biological, and geographic variab... Climate change is the phrase used to describe long-term changes in temperatures and weather patterns. Changes in the atmosphere and their interactions with diverse geologic, chemical, biological, and geographic variables are the main contributors to this cyclical adjustment of the Earth’s climate. Such changes may be induced purposefully, because of burning fossil fuels, clearing forests, and raising animals, or they may be natural, brought on by significant volcanic eruptions or variations in the sun’s activity. By significantly increasing the amount of greenhouse gases already in the atmosphere, this heightens the greenhouse effect and contributes to global warming. This work includes several additional theoretical and practical explanations of sustainable development. The theoretical work encompasses hundreds of researches that identify requirements for how development routes might satisfy sustainable development (SD) criteria using economic theory, complex systems approach, ecological science, and other techniques. The agreements made by the Parties in various nations across the world will consider a wide range of perspectives about what would be considered undesirable effects on the environment, the climate system, sustainability, economic growth, or food production. 展开更多
关键词 earth system Ancient climatic Changes Causes of climatic Changes Ecological Risk Assessment ECOsYsTEM Abrupt climate Change of earth sUsTAINABILITY
下载PDF
Spatio-temporal Variation Characteristics of Extreme Climate Events and Their Teleconnections to Large-scale Ocean-atmospheric Circulation Patterns in Huaihe River Basin,China During 1959–2019
3
作者 YAO Tian ZHAO Qiang +6 位作者 WU Chuanhao HU Xiaonong XIA Chuan'an WANG Xuan SANG Guoqiang LIU Jian WANG Haijun 《Chinese Geographical Science》 SCIE CSCD 2024年第1期118-134,共17页
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of... Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB. 展开更多
关键词 extreme climate indices sen’s slope variation mutation test atmospheric circulation indices Pearson’s correlation analysis Huaihe River Basin(HRB) China
下载PDF
Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China
4
作者 LU Haitian ZHAO Ruifeng +3 位作者 ZHAO Liu LIU Jiaxin LYU Binyang YANG Xinyue 《Journal of Arid Land》 SCIE CSCD 2024年第6期798-815,共18页
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp... Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity. 展开更多
关键词 surface water area terrestrial water storage Open-surface Water Detection Method with Enhanced Impurity Control method Google earth Engine climate change human activities inland arid and semi-arid areas
下载PDF
Interrelationships between Length of the Day, Moon Distance, Phanerozoic Geodynamic Cycles, Tidal Dissipation and Earth’s Core: Review and Analysis
5
作者 Heinz-Jürgen Brink 《International Journal of Geosciences》 CAS 2024年第5期396-415,共20页
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around... The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate. 展开更多
关键词 Length of the Day Moon Distance Phanerozoic Geodynamic Cycles Tidal Dissipation earths Core
下载PDF
Future meteorological drought conditions in southwestern Iran based on the NEX-GDDP climate dataset
6
作者 Sakine KOOHI Hadi RAMEZANI ETEDALI 《Journal of Arid Land》 SCIE CSCD 2023年第4期377-392,共16页
Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at... Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at a local scale is vital.In this study,we assessed the efficiency of seven downscaled Global Climate Models(GCMs)provided by the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP),and investigated the impacts of climate change on future meteorological drought using Standard Precipitation Index(SPI)in the Karoun River Basin(KRB)of southwestern Iran under two Representative Concentration Pathway(RCP)emission scenarios,i.e.,RCP4.5 and RCP8.5.The results demonstrated that SPI estimated based on the Meteorological Research Institute Coupled Global Climate Model version 3(MRI-CGCM3)is consistent with the one estimated by synoptic stations during the historical period(1990-2005).The root mean square error(RMSE)value is less than 0.75 in 77%of the synoptic stations.GCMs have high uncertainty in most synoptic stations except those located in the plain.Using the average of a few GCMs to improve performance and reduce uncertainty is suggested by the results.The results revealed that with the areas affected by wetness decreasing in the KRB,drought frequency in the North KRB is likely to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios.At the seasonal scale,the decreasing trend for SPI in spring,summer,and winter shows a drought tendency in this region.The climate-induced drought hazard can have vast consequences,especially in agriculture and rural livelihoods.Accordingly,an increasing trend in drought during the growing seasons under RCP scenarios is vital for water managers and farmers to adopt strategies to reduce the damages.The results of this study are of great value for formulating sustainable water resources management plans affected by climate change. 展开更多
关键词 climate change meteorological drought Global climate Models(GCMs) standard Precipitation Index(sPI) Representative Concentration Pathway(RCP) NAsA earth Exchange Global Daily Downscaled Projections(NEX-GDDP) southwestern Iran
下载PDF
Earth observation big data for climate change research 被引量:6
7
作者 GUO Hua-Dong ZHANG Li ZHU Lan-Wei 《Advances in Climate Change Research》 SCIE CSCD 2015年第2期108-117,共10页
Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and... Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and chemical parameters on a global scale.Earth observation data has the 4V features(volume,variety,veracity,and velocity) of big data that are suitable for climate change research.Moreover,the large amount of data available from scientific satellites plays an important role.This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research,such as synchronous satelliteeaerialeground observation experiments,which provide extremely large and abundant datasets; Earth observational sensitive factors(e.g.,glaciers,lakes,vegetation,radiation,and urbanization); and global environmental change information and simulation systems.With the era of global environment change dawning,Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking.Inevitably,Earth observation big data will encounter opportunities and challenges brought about by global climate change. 展开更多
关键词 earth OBsERVATION BIG data climate CHANGE Informat
下载PDF
Major Modes of Short-Term Climate Variability in the Newly Developed NUIST Earth System Model(NESM) 被引量:10
8
作者 CAO Jian Bin WANG +5 位作者 Baoqiang XIANG Juan LI WU Tianjie Xiouhua FU WU Liguang MIN Jinzhong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期585-600,共16页
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nu... A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO. 展开更多
关键词 coupled climate model earth system model climate variability
下载PDF
Global Climate Internal Variability in a 2000-year Control Simulation with Community Earth System Model(CESM) 被引量:13
9
作者 WANG Zhiyuan LI Yao +1 位作者 LIU Bin LIU Jian 《Chinese Geographical Science》 SCIE CSCD 2015年第3期263-273,共11页
Using the low-resolution(T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model(CESM) from the National Center for Atmospheric Research(NCAR), a global climate simulation was carri... Using the low-resolution(T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model(CESM) from the National Center for Atmospheric Research(NCAR), a global climate simulation was carried out with fixed external forcing factors(1850 Common Era.(C.E.) conditions) for the past 2000 years. Based on the simulated results, spatio-temporal structures of surface air temperature, precipitation and internal variability, such as the El Nio-Southern Oscillation(ENSO), the Atlantic Multi-decadal Oscillation(AMO), the Pacific Decadal Oscillation(PDO), and the North Atlantic Oscillation(NAO), were compared with reanalysis datasets to evaluate the model performance. The results are as follows: 1) CESM showed a good performance in the long-term simulation and no significant climate drift over the past 2000 years; 2) climatological patterns of global and regional climate changes simulated by the CESM were reasonable compared with the reanalysis datasets; and 3) the CESM simulated internal natural variability of the climate system performs very well. The model not only reproduced the periodicity of ENSO, AMO and PDO events but also the 3–8 years variability of the ENSO. The spatial distribution of the CESM-simulated NAO was also similar to the observed. However, because of weaker total irradiation and greenhouse gas concentration forcing in the simulation than the present, the model performances had some differences from the observations. Generally, the CESM showed a good performance in simulating the global climate and internal natural variability of the climate system. This paves the way for other forced climate simulations for the past 2000 years by using the CESM. 展开更多
关键词 CEsM 地球系统 控制仿真 共同体 气候变异 太平洋年代际振荡 北大西洋涛动 气候模拟
下载PDF
Climate Changes Consequences from Sun-Earth Connections and Anthropogenic Relationships 被引量:1
10
作者 Marilia Hagen Anibal Azevedo 《Natural Science》 2022年第2期24-41,共18页
This paper is a study to understand how climate changed last fifty years. There are two theories: the first one considers the solar variability and the influence of those alterations on climate;the second one blames h... This paper is a study to understand how climate changed last fifty years. There are two theories: the first one considers the solar variability and the influence of those alterations on climate;the second one blames human activity and the consequences on temperatures and disruption on the environment created by humans. Our conclusions pointed out that dimensions involved between Earth and Sun, and Earth/Atmosphere, the second one can disturb the temperature on Earth’s surface and make seasonality variations impossible to be explained only by Sun/Earth connections. 展开更多
关键词 climate Change sun-earth Connections Troposphere ANTHROPOGENIC
下载PDF
Fair Plan 7: Earth’s Climate Future = Humanity’s Choice
11
作者 Michael E. Schlesinger Michael Ring +1 位作者 Emily F. Cross Daniela Lindner 《Atmospheric and Climate Sciences》 2015年第3期345-366,共22页
Earth’s climate future is in the hands of humanity. If emissions of greenhouse gases remain unabated, Earth’s climate will return to the climate of the Late Eocene, 35 million years ago, when sea level was 73 meters... Earth’s climate future is in the hands of humanity. If emissions of greenhouse gases remain unabated, Earth’s climate will return to the climate of the Late Eocene, 35 million years ago, when sea level was 73 meters (240 feet) higher than today. Should that occur, many coastal cities around the world would be inundated. Moreover the Global Warming of this unabated Reference case will be comparable to the Global Warming from the Last Glacial Maximum 21,000 years ago to the beginning of the Holocene interglacial climate 11,000 years ago. However, this human-caused Global Warming would occur 50 times faster than that caused by nature. Alternatively, humanity can mitigate greenhouse-gas emissions to keep Global Warming below the 2&#176C maximum adopted by the United Nations Framework Convention on Climate Change “to prevent dangerous anthropogenic interference with the climate system”. This mitigation can either be done rapidly, as in the “80/50” Plan to reduce greenhouse-gas emissions 80% by 2050, or much more slowly, from 2020 to 2100, as in the Fair Plan to Safeguard Earth’s Climate. The Fair Plan is a compromise between doing nothing, as in the Reference case, and rapidly reducing greenhouse-gas emissions, as in the 80/50 Plan. Regardless of the Plan chosen to reduce greenhouse-gas emissions to keep Global Warming below the UNFCCC limit of 2&#176C (3.6&#176F), it should not be tantamount to our saying to one of our planetary spacecraft, Bon Voyage, call us when you get to your planetary destination. Rather, as with our spacecraft, the chosen climate-change policy should be monitored throughout the 21st century and Midcourse Corrections made thereto as needed to keep our “Climate Spacecraft” on track to achieve its “Climate Target”. 展开更多
关键词 earths climate FUTURE
下载PDF
Fair Plan 8: Earth’s Climate Future—Pope Francis’ Population Mistake
12
作者 Michael E. Schlesinger Michael Ring Emily F. Cross 《Atmospheric and Climate Sciences》 2016年第1期103-111,共9页
Pope Francis wrote in his Encyclical Letter Laudato Si’: On Care for Our Common Home: “Instead of resolving the problems of the poor and thinking of how the world can be different, some can only propose a reduction ... Pope Francis wrote in his Encyclical Letter Laudato Si’: On Care for Our Common Home: “Instead of resolving the problems of the poor and thinking of how the world can be different, some can only propose a reduction in the birth rate.” … “To blame population growth instead of extreme and selective consumerism on the part of some is one way of refusing to face the issues.” Here, we test the hypothesis that population size does not matter. We do so in terms of the effect of the size of the human population on its emission of greenhouse gases. We find that the hypothesis is false = PO-PULATION MATTERS. Ceteris paribus, the larger the population of human beings on Planet Earth, the more difficult it will be to reduce, and finally eliminate, the emission of greenhouse gases by humanity and, thereby, constrain human-caused climate change = Anthropogenic Global Warming. 展开更多
关键词 earths climate Future Population Matters
下载PDF
A Vision of the Planet of the Earth in the Next 300-500 Years under Climate Change with Proposed Measures to Mitigate the Effects of Climate Change
13
作者 Severin Sikanja 《Open Journal of Forestry》 2020年第1期155-171,共17页
The paper will present climate change, (global warming), and what is most important, the lasting consequences for planet Earth, which will be reflected for 500 years and maybe even before that deadline, the greatest e... The paper will present climate change, (global warming), and what is most important, the lasting consequences for planet Earth, which will be reflected for 500 years and maybe even before that deadline, the greatest environmental catastrophe that has not hit planet Earth since its inception will be felt. This will actually be the end of life on planet Earth and for the modern man (Homo sapiens Lat.). Measures that will be proposed in the work, as possible mitigation of the consequences of catastrophic consequences on planet Earth and life on it, in fact, they can only prolong or slightly reduce the end of life on planet earth that is imminent. The Titanic people only had 2.5 hours to live. “WE WILL HAVE A 500 YEARS”. 展开更多
关键词 Planet earth ECOLOGICAL climate Change The End
下载PDF
甘肃积石山 M_(s)6.2级地震的震害特征与启示 被引量:1
14
作者 王丽丽 王兰民 +5 位作者 卢育霞 许世阳 夏晓雨 盖海龙 池佩红 郭梅 《世界地震工程》 北大核心 2024年第1期58-71,共14页
2023年12月18日,甘肃省临夏回族自治州积石山保安族东乡族撒拉族自治县(35.70°N,102.79°E)发生了6.2级地震,震中烈度为VIII度。地震发生后,通过实地烈度评估与科学考察,对震区VI~VIII度区不同建(构)筑物与生命线工程的震害特... 2023年12月18日,甘肃省临夏回族自治州积石山保安族东乡族撒拉族自治县(35.70°N,102.79°E)发生了6.2级地震,震中烈度为VIII度。地震发生后,通过实地烈度评估与科学考察,对震区VI~VIII度区不同建(构)筑物与生命线工程的震害特点进行了统计分析;从抗震设计与施工管理、场地放大效应与地震次生灾害对建筑结构抗震性能的影响等角度,提出了此次地震的震害启示。结果表明:1)严重破坏和毁坏的建筑结构主要集中在老旧的土木结构、砖木结构和无设防或设防不规范的砖混结构。2)造成建筑结构破坏的主要原因是少量自建房抗震设计和施工的不规范、场地放大效应和地震次生灾害。3)优化和改良生土砌筑材料,改进纵横墙间的拉结措施,强化结构整体性是提高土木结构抗震的有效方法;普及“上下圈梁与构造柱”等基本抗震设防措施,规范水泥砂浆强度,提升农村工匠的施工水平,可有效提高砌体结构的整体性,避免房屋出现整体性垮塌;室内洗手间的墙体应该与房顶、纵横墙间建立有效联接,提高结构的抗震性能。4)孤突斜坡、河流高阶地与岸边为抗震不利地带。当建造用地极为匮乏,不得不选址在这些场地之上时,应该综合考虑场地的地形地貌特征、岩土体物理力学特性、水文地质条件、抗震设防目标、建筑结构类型等影响因素,做好地震灾害风险评估,根据评估结果进行科学设防。灾后重建过程中,应由政府统一规划选址、统一设计,规范施工。 展开更多
关键词 积石山6.2级地震 震害调查 场地放大效应 黄土液化流滑 震害特征
下载PDF
基于D-S证据理论的农作物气候品质预测方法研究:以晚熟杂交柑橘春见为例
15
作者 付世军 李梦 +6 位作者 杨晓兵 何震 袁佳阳 刘书慧 徐越 卢德全 张利平 《贵州农业科学》 CAS 2024年第5期122-132,共11页
【目的】基于多源气象数据构建果实品质(糖含量等级)预测模型,为科学评价果实气候品质及深入挖掘农产品气候资源提供科学依据。【方法】以晚熟柑橘春见果实为研究对象,利用多源数据融合技术、人工神经网络(BP神经网络、RBF神经网络和El... 【目的】基于多源气象数据构建果实品质(糖含量等级)预测模型,为科学评价果实气候品质及深入挖掘农产品气候资源提供科学依据。【方法】以晚熟柑橘春见果实为研究对象,利用多源数据融合技术、人工神经网络(BP神经网络、RBF神经网络和Elman神经网络)和D-S证据理论,包括气象数据质量控制、特征选取、特征级融合、决策级融合4个步骤,构建基于多源气象数据的果实品质(糖含量等级)预测模型。【结果】春见果实品质预测模型采用BP神经网络预测结果总体准确率为87.50%,平均绝对误差(MAE)为0.150,均方根误差(RMSE)为0.447;RBF神经网络预测结果总体准确率为85.00%,MAE为0.175,RMSE为0.474;Elman神经网络预测结果总体准确率为87.50%,MAE为0.150,RMSE为0.447;D-S证据理论决策融合总体预测准确率达95.20%,分别较BP神经网络、RBF神经网络和Elman神经网络提升7.7百分点、10.2百分点和7.7百分点,MAE和RMSE分别为0.040和0.214,均明显降低。【结论】D-S证据理论决策融合后的果实品质预测准确率相比单一神经网络预测更高、误差更小。 展开更多
关键词 晚熟柑橘 春见 气候品质 多源数据融合 BP神经网络 RBF神经网络 ELMAN神经网络 D-s证据理论
下载PDF
Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain 被引量:33
16
作者 YU Da-pao GU Hui-yan +2 位作者 WANG Jian-dong WANG Qing-li DAI Li-min 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第3期187-192,共6页
Based on the tree-ring growth characteristics of Erman's birch (Betula ermanii charm.) and the relationships between it and climatic )'actors at elevation of 1950m, the sensitivity of tree lines in Changbai Mount... Based on the tree-ring growth characteristics of Erman's birch (Betula ermanii charm.) and the relationships between it and climatic )'actors at elevation of 1950m, the sensitivity of tree lines in Changbai Mountain to climatic factors was assessed. The results indicated tree line forest in Changbai Mountain had an obvious sensitivity to climate factors. However, difference from other study sits is that the main climatic control factor on tree-ring growth was not current growth season temperatures, as might be expected, but previous winter and current March temperature. Although the precipitation in the region was quite abundant, the tree-ring growth was still significantly correlated with the precipitation during previous winter and current spring. Additionally, climatic factors which influenced the Erman's birch growth were not the yearly variables, but seasonal and monthly variables. Therefore, the reported increase in yearly mean temperature and total yearly precipitation since 1980s was not responded by sustained increase in ring widths in recent decades. 展开更多
关键词 climatic change dendrochronology Erman's birch Tree line in Changbai Mountain
下载PDF
Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang,Northwest China 被引量:2
17
作者 Jie Xue 《Research in Cold and Arid Regions》 CSCD 2016年第1期82-94,共13页
The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff... The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958-2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden- tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can improve the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economie development. 展开更多
关键词 climate change synchronism wavelet power spectrum analysis R/s method RUNOFF
下载PDF
The withdrawal of the U.S. from the Paris Agreement and its impact on global climate change governance 被引量:4
18
作者 ZHANG Yong-Xiang CHAO Qing-Chen +1 位作者 ZHENG Qiu-Hong HUANG Lei 《Advances in Climate Change Research》 SCIE CSCD 2017年第4期213-219,共7页
The global community has prepared for the withdrawal of the U.S. from the Paris Agreement since Donald Trump was elected as the president of the U.S. However, Trump's formal declaration of withdrawal still caused ... The global community has prepared for the withdrawal of the U.S. from the Paris Agreement since Donald Trump was elected as the president of the U.S. However, Trump's formal declaration of withdrawal still caused worldwide reaction. Trump will use the withdrawal to build his political reputation and to renegotiate the Paris Agreement despite its negative effects on the political credibility, international relationships, and potential long-term economic growth of the U.S. In general, the withdrawal of the U.S. from the Paris Agreement will not change the development of low-carbon technologies and the transformation trend of the global climate governance regime. However, the long-term goals and international cooperation on climate change will be affected by budget cuts in American climate change research and the cancelation of donations from the multilateral environmental fund of the U.S. If the Paris Agreement is renegotiated, the common but differentiated principle of responsibility of the United Nations Framework Convention on Climate Change will be challenged again. Nevertheless, climate change governance remains a main theme of future sustainable development. Instead of national governments, local governments and non-governmental organizations will develop strategies for technical innovation and emphasize pragmatic cooperation, thus expanding their roles in climate change governance. The capacity building on climate change research and public awareness should be enhanced as a long-term objective of global climate change governance. 展开更多
关键词 U.s. withdraw PARIs AGREEMENT Global climate change GOVERNANCE IMPACT
下载PDF
A possible interrelation between Earth rotation and climatic variability at decadal time-scale 被引量:2
19
作者 Leonid Zotov C.Bizouard C.K.Shum 《Geodesy and Geodynamics》 2016年第3期216-222,共7页
Using multichannel singular spectrum analysis (MSSA) we decomposed climatic time se- ries into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtrac... Using multichannel singular spectrum analysis (MSSA) we decomposed climatic time se- ries into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtracted. Similar quasi 60 and 20 year periodic os- cillations have been found in the global mean Earth temperature anomaly (HadCRUT4) and global mean sea level (GMSL). Similar cycles were also found in Earth rotation variation. Over the last 160 years multi-decadal change of Earth's rotation velocity is correlated with the 60-year temperature anomaly, and Chandler wobble envelope reproduces the form of the 60-year oscillation noticed in GMSL. The quasi 20-year oscillation observed in GMSL is correlated with the Chandler wobble excitation. So, we assume that Earth's rotation and climate indexes are connected. Despite of all the clues hinting this connection, no sound conclusion can be done as far as ocean circulation modelling is not able to correctly catch angular momentum of the oscillatory modes. 展开更多
关键词 earth rotation climate change sea level Multichannel singular spectrumanalysis (MssA) North Atlantic Oscillation (NAO) Atlantic Multi-decadal Oscillation(AMO)
下载PDF
基于GoogleEarthEngine的黄土高原植被覆盖度时空变化特征分析
20
作者 姚楠 董国涛 薛华柱 《水土保持研究》 CSCD 北大核心 2024年第1期260-268,共9页
[目的]探究黄土高原植被覆盖度变化的时空特征,揭示植被对气候因子变化的时滞效应,进而为地区生态保护与高质量发展提供数据支撑。[方法]基于2001年至2020年的黄土高原地区NDVI数据、气温和降水数据,利用像元二分法、一元线性回归和时... [目的]探究黄土高原植被覆盖度变化的时空特征,揭示植被对气候因子变化的时滞效应,进而为地区生态保护与高质量发展提供数据支撑。[方法]基于2001年至2020年的黄土高原地区NDVI数据、气温和降水数据,利用像元二分法、一元线性回归和时滞偏相关分析等方法,开展地区植被与气候因子变化关系的研究。[结果]过去20年间,黄土高原植被覆盖度以0.076/10 a的速率增加,在空间上主要呈现极显著增加,但占总面积38.29%的区域植被覆盖变化波动较大。黄土高原月植被覆盖度与气温和降水呈现显著正相关关系,其中降水是影响植被变化的主要因素。植被对降水的响应滞后时间主要集中在3个月,而气温的滞后时间在空间上存在较大差异,东南部植被主要滞后0至1个月,而西北部植被主要滞后2至3个月。[结论]黄土高原植被变化主要受降水影响,20年间植被恢复情况良好,但变化波动较大,未来应继续生态保护工作进行巩固。 展开更多
关键词 植被覆盖度 GEE 时滞相关 气候变化 黄土高原
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部