According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and...According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real time supervisory system is developed in this paper. It can be used to real timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced.展开更多
The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
The long-term existence of dam structures significantly modified the river channel. In accordance with a drastic increase of low-head dams under consideration for removal in recent years, it is important to predict th...The long-term existence of dam structures significantly modified the river channel. In accordance with a drastic increase of low-head dams under consideration for removal in recent years, it is important to predict the effects of low-head dam removal from the modified river channel by the low-head dam construction. This study intends to investigate the long-term channel evolution process following low-head construction and removal and to find out the influential parameters (sediment diameter, river bed slope, dam height) for those channel evolution by two-dimensional numerical simulation model. Following the low-head dam construction, sediment deposition rates in upstream of the low-head dam are varied with the influential parameters. The sediment deposition rates and sandbar formation with riparian vegetation settlement on sandbars have significantly affected for channel evolution following low-head dam removal. Especially the knickpoint formation and the types of vegetation (grass type and tree type) on the sandbars are critical factors for channel evolution following low-head dam removal. Through the numerical simulation results of low-head dam construction (50 years) and low-head dam removal (50 years), it is identified that the modified river channel by low-head dam may not be easily restored to pre-dam conditions following its removal especially in river geomorphology and riparian vegetation. Consequently, this study found that the reversibility following low-head dam construction and removal depends on the sediment deposition rates in upstream of the low-head dam.展开更多
There are many papers on red tide occurrences and eutrophication. Here, we use these data to examine the relationship between dam construction and red tide occurrence in Kesennuma Bay, Dokai Bay and the small bays of ...There are many papers on red tide occurrences and eutrophication. Here, we use these data to examine the relationship between dam construction and red tide occurrence in Kesennuma Bay, Dokai Bay and the small bays of the Seto Inland Sea, Japan. Here, for the first time, differences in mechanisms of red tide occurrences in these small bays are demonstrated. Mud overflowing from dams likely induces red tides in these areas as the mud flows out from the mouth of the rivers, is carried along the coast by the longshore current, and then enters and is deposited into small bays. Red tide is considered to be induced by the accumulation of mud and siltation. From data on the locations and year of red tide occurrences in the Gulf of Mexico, the same mechanism as for the occurrence of red tide in small bays of Japanwas found to be applicable.展开更多
Construction employees could experience occupational psychological disorders, such as workaholism and burnout due to their work, personality characteristics or lifestyle. This study sought to explore the effects of ps...Construction employees could experience occupational psychological disorders, such as workaholism and burnout due to their work, personality characteristics or lifestyle. This study sought to explore the effects of psychological disorders on construction employees and the construction industry. To achieve this aim, both the methods of focus group discussions and survey questionnaire were employed. The focus group discussions revealed 17 potential effects and 12 potential effects of psychological disorders on the construction employees and the construction industry respectively. A quantitative study was then employed to determine the key effects and to test the reliability of the findings from the focus group study. The results revealed that the highly perceived effects of psychological disorders on construction employees were accident-prone, chronic pain, insomnia or sleep disturbances, as these had the highest mean scores. The key effects also identified as perceived effects of construction employees’ psychological health conditions on the construction industry were: absenteeism/sick leave, errors in work, job dissatisfaction and increased medical costs. Exploratory factor analysis was employed, and the 17 effects on construction employees were categorized under behavioural effects and physiological effects. The 12 effects on the construction industry were also categorized under direct costs and indirect costs. The results from this study confirm the need for strategic interventions to mitigate the effects of occupational psychological disorders on construction employees and the construction industry of Ghana and to some extent globally. The exploratory nature of the study using preliminary findings from focus group discussions contributes to the literature on occupational health psychology.展开更多
In the existing research at home and abroad,the construction of extracurricular learning platform is still only focused on solving the problems of curriculum learning itself.At the same time,there are no cases of mult...In the existing research at home and abroad,the construction of extracurricular learning platform is still only focused on solving the problems of curriculum learning itself.At the same time,there are no cases of multiple linkage effects,including integrating alumni resources,promoting the construction of alumni association,promoting students'internship and employment,strengthening ties with enterprises and so on.On the basis of the original function of the alumni management system,this paper expands the sections and adds the main body of students to enrich the functions of the platform.This paper constructs a fully-participatory extracurricular learning platform with multiple linkage effect,which provides a reference for other majors inside and outside the school to establish extracurricular learning platform.展开更多
With the continuous development of the construction industry,the density of engineering construction and the difficulty of underground construction are also increasing.As an important construction protection measure,f...With the continuous development of the construction industry,the density of engineering construction and the difficulty of underground construction are also increasing.As an important construction protection measure,foundation pit support construction is widely used in underground construction.Starting from the characteristics of foundation pit support construction,this paper analyzes the influence of geotechnical investigation on foundation pit support construction,and analyzes the problems that need to be paid attention to in the survey process.展开更多
This paper examines the far-reaching influence of anti-dam movement on the protection of environment in the second half of the 20th century in American West. It first introduces the historical background of dams built...This paper examines the far-reaching influence of anti-dam movement on the protection of environment in the second half of the 20th century in American West. It first introduces the historical background of dams built along the Colorado River-the most important river in the West, especially the construction of Hoover Dam and Glen Canyon Dam. Then, the criticism of dams on the Colorado is examined with the emphasis on the anti-dam movement resulting from the awareness of the negative ecological impacts on the Colorado. In the conclusion, the author demonstrates the unparallel historical significance of the anti-dam movement in the environmentalism in developing the American West.展开更多
The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the We...The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem.展开更多
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t...A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.展开更多
The anti-Japanese woodcuts focus on the red revolutionary culture and describe the connotation of the Anti-Japanese War era,which is self-evident in the commemorative value of China’s revolutionary struggle history.F...The anti-Japanese woodcuts focus on the red revolutionary culture and describe the connotation of the Anti-Japanese War era,which is self-evident in the commemorative value of China’s revolutionary struggle history.For example,in Shanxi,China,woodcut art activities and social practice promotion activities organized around the theme of the Anti-Japanese War are also everywhere,which all show the people’s nature of the Chinese people during the revolutionary struggle from the two aspects of the red culture of the Anti-Japanese War and traditional art and culture,and its humanistic connotation is quite profound.In this paper,we first introduce the historical origin of woodcut during the Anti-Japanese War,and then show the people’s value connotation of woodcut art activities in Shanxi.This paper mainly discusses the image narration,language and picture narration and construction significance of woodcuts in Shanxi’s War of Resistance,fully reveals the narrative nature of image media,strives to arouse people’s recognition of this period of Shanxi’s War of Resistance culture and history,and reflects the realistic value and significance of Shanxi’s War of Resistance Woodcuts art activities.展开更多
Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 mz was constructed on...Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 mz was constructed on an egg duck farm, and water hyacinth (Eichhornia crassipes) was chosen as an aquatic plant for the wetland and used as food for duck production. The objectives of this study were to test the role of water hyacinth in purifying nutrient-rich wastewater and its effects on the ducks' feed intake, egg laying performance and egg quality. This paper shows that the constructed wetland removed as much as 64.44% of chemical oxygen demand (COD), 21.78% of total nitrogen (TN) and 23.02% of total phosphorus (TP). Both dissolved oxygen (DO) and the transparency of the wastewater were remarkably improved, with its transparency 2.5 times higher than that of the untreated wastewater. After the ducks were fed with water hyacinth, the average daily feed intake and the egg-laying ratio in the test group were 5.86% and 9.79% higher, respectively, than in the control group; the differences were both significant at the 0.01 probability level. The egg weight in the test group was 2.36% higher than in the control group (P 〈 0.05), but the feed conversion ratios were almost the same. The eggshell thickness and strength were among the egg qualities significantly increased in ducks fed with water hyacinth. We concluded that a water hyacinth system was effective for purifying wastewater from an intensive duck farm during the water hyacinth growing season, as harvested water hyacinth had an excellent performance as duck feed. We also discussed the limitations of the experiment.展开更多
The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of l...The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for...Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for high tailings dam was developed according to the results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailing dam 113.5 m high. The law of generation, diffusion and dissipation of seismic pore water pressure during and after earthquake was investigated, and the results of tailings dam’s acceleration, seismic dynamic stress and pore water pressure were obtained. The results show that the seismic stability and liquefaction resistance of high tailings dam are strengthened remarkably, and the scope and depth of liquefaction area at the top of dam are reduced greatly. The interior stress is compressive stress, the stress level of every element is less than 1.0 and the safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailing dam is greater than 1.5 according to the effective stress analysis of seismic response by finite element method. The calculated results prove that liquefaction is the main reason of seismic failure of high tailing dams, and the effect of seismic inertia forces on high tailing dams’ stability during earthquake is secondary reason.展开更多
The well-known Three Gorges Dam(TGD) within the Yangtze catchment launched its operation in 2003. The effect of the TGD operation on the sediment size on the East China Sea shelf is rarely known. High resolution(0.5 c...The well-known Three Gorges Dam(TGD) within the Yangtze catchment launched its operation in 2003. The effect of the TGD operation on the sediment size on the East China Sea shelf is rarely known. High resolution(0.5 cm sampling) grain size analysis and 137 Cs and 210 Pb dating of the DH8-1 core were conducted with core collected from the distal part of a main sink for the modern Yangtze sediment entering the sea, the Min-Zhe Coastal Mud Deposits(MZCMD) on the inner East China Sea shelf. The 137 Cs dating results show that the core DH8-1 formed during 1946–2012 with a mean deposition rate of 0.65 cm yr^(-1), indicating that the 0.5 cm sampling for grain size analysis in this local area could reflect environmental changes generally on a one-year time scale. The mean grain size of DH8-1 core sediment that deposited after 2003 is significantly larger than that deposited during 1988–2002. After ruling out other possible factors, we infer that the sediment coarsening of DH8-1 core after 2003 is attributed to the TGD operation which causes the erosion of the Yangtze subaqueous delta. Specifically, the TGD operation significantly intensifies the declining trend of the Yangtze sediment loads to the sea despite no decreased water discharge, which results in extensive erosion of the Yangtze subaqueous delta. The relatively coarse sediment of the subaqueous delta is eroded and resuspended by ocean dynamics and then transported by coastal current, finally depositing on the MZCMD area. In addition, the general sediment fining of core DH8-1 that deposited during 1988–2002, comparing with 1946–1987, is mainly caused by dam construction and soil and water conservation within the Yangtze catchment. Our findings are helpful for better understanding the effects of such a huge dam as the TGD on a sediment sink like the MZCMD of such a large river as the Yangtze River.展开更多
The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by...The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.展开更多
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art...To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.展开更多
文摘According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real time supervisory system is developed in this paper. It can be used to real timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced.
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
文摘The long-term existence of dam structures significantly modified the river channel. In accordance with a drastic increase of low-head dams under consideration for removal in recent years, it is important to predict the effects of low-head dam removal from the modified river channel by the low-head dam construction. This study intends to investigate the long-term channel evolution process following low-head construction and removal and to find out the influential parameters (sediment diameter, river bed slope, dam height) for those channel evolution by two-dimensional numerical simulation model. Following the low-head dam construction, sediment deposition rates in upstream of the low-head dam are varied with the influential parameters. The sediment deposition rates and sandbar formation with riparian vegetation settlement on sandbars have significantly affected for channel evolution following low-head dam removal. Especially the knickpoint formation and the types of vegetation (grass type and tree type) on the sandbars are critical factors for channel evolution following low-head dam removal. Through the numerical simulation results of low-head dam construction (50 years) and low-head dam removal (50 years), it is identified that the modified river channel by low-head dam may not be easily restored to pre-dam conditions following its removal especially in river geomorphology and riparian vegetation. Consequently, this study found that the reversibility following low-head dam construction and removal depends on the sediment deposition rates in upstream of the low-head dam.
文摘There are many papers on red tide occurrences and eutrophication. Here, we use these data to examine the relationship between dam construction and red tide occurrence in Kesennuma Bay, Dokai Bay and the small bays of the Seto Inland Sea, Japan. Here, for the first time, differences in mechanisms of red tide occurrences in these small bays are demonstrated. Mud overflowing from dams likely induces red tides in these areas as the mud flows out from the mouth of the rivers, is carried along the coast by the longshore current, and then enters and is deposited into small bays. Red tide is considered to be induced by the accumulation of mud and siltation. From data on the locations and year of red tide occurrences in the Gulf of Mexico, the same mechanism as for the occurrence of red tide in small bays of Japanwas found to be applicable.
文摘Construction employees could experience occupational psychological disorders, such as workaholism and burnout due to their work, personality characteristics or lifestyle. This study sought to explore the effects of psychological disorders on construction employees and the construction industry. To achieve this aim, both the methods of focus group discussions and survey questionnaire were employed. The focus group discussions revealed 17 potential effects and 12 potential effects of psychological disorders on the construction employees and the construction industry respectively. A quantitative study was then employed to determine the key effects and to test the reliability of the findings from the focus group study. The results revealed that the highly perceived effects of psychological disorders on construction employees were accident-prone, chronic pain, insomnia or sleep disturbances, as these had the highest mean scores. The key effects also identified as perceived effects of construction employees’ psychological health conditions on the construction industry were: absenteeism/sick leave, errors in work, job dissatisfaction and increased medical costs. Exploratory factor analysis was employed, and the 17 effects on construction employees were categorized under behavioural effects and physiological effects. The 12 effects on the construction industry were also categorized under direct costs and indirect costs. The results from this study confirm the need for strategic interventions to mitigate the effects of occupational psychological disorders on construction employees and the construction industry of Ghana and to some extent globally. The exploratory nature of the study using preliminary findings from focus group discussions contributes to the literature on occupational health psychology.
文摘In the existing research at home and abroad,the construction of extracurricular learning platform is still only focused on solving the problems of curriculum learning itself.At the same time,there are no cases of multiple linkage effects,including integrating alumni resources,promoting the construction of alumni association,promoting students'internship and employment,strengthening ties with enterprises and so on.On the basis of the original function of the alumni management system,this paper expands the sections and adds the main body of students to enrich the functions of the platform.This paper constructs a fully-participatory extracurricular learning platform with multiple linkage effect,which provides a reference for other majors inside and outside the school to establish extracurricular learning platform.
文摘With the continuous development of the construction industry,the density of engineering construction and the difficulty of underground construction are also increasing.As an important construction protection measure,foundation pit support construction is widely used in underground construction.Starting from the characteristics of foundation pit support construction,this paper analyzes the influence of geotechnical investigation on foundation pit support construction,and analyzes the problems that need to be paid attention to in the survey process.
文摘This paper examines the far-reaching influence of anti-dam movement on the protection of environment in the second half of the 20th century in American West. It first introduces the historical background of dams built along the Colorado River-the most important river in the West, especially the construction of Hoover Dam and Glen Canyon Dam. Then, the criticism of dams on the Colorado is examined with the emphasis on the anti-dam movement resulting from the awareness of the negative ecological impacts on the Colorado. In the conclusion, the author demonstrates the unparallel historical significance of the anti-dam movement in the environmentalism in developing the American West.
文摘The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20602,U2040221).
文摘A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.
文摘The anti-Japanese woodcuts focus on the red revolutionary culture and describe the connotation of the Anti-Japanese War era,which is self-evident in the commemorative value of China’s revolutionary struggle history.For example,in Shanxi,China,woodcut art activities and social practice promotion activities organized around the theme of the Anti-Japanese War are also everywhere,which all show the people’s nature of the Chinese people during the revolutionary struggle from the two aspects of the red culture of the Anti-Japanese War and traditional art and culture,and its humanistic connotation is quite profound.In this paper,we first introduce the historical origin of woodcut during the Anti-Japanese War,and then show the people’s value connotation of woodcut art activities in Shanxi.This paper mainly discusses the image narration,language and picture narration and construction significance of woodcuts in Shanxi’s War of Resistance,fully reveals the narrative nature of image media,strives to arouse people’s recognition of this period of Shanxi’s War of Resistance culture and history,and reflects the realistic value and significance of Shanxi’s War of Resistance Woodcuts art activities.
文摘Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 mz was constructed on an egg duck farm, and water hyacinth (Eichhornia crassipes) was chosen as an aquatic plant for the wetland and used as food for duck production. The objectives of this study were to test the role of water hyacinth in purifying nutrient-rich wastewater and its effects on the ducks' feed intake, egg laying performance and egg quality. This paper shows that the constructed wetland removed as much as 64.44% of chemical oxygen demand (COD), 21.78% of total nitrogen (TN) and 23.02% of total phosphorus (TP). Both dissolved oxygen (DO) and the transparency of the wastewater were remarkably improved, with its transparency 2.5 times higher than that of the untreated wastewater. After the ducks were fed with water hyacinth, the average daily feed intake and the egg-laying ratio in the test group were 5.86% and 9.79% higher, respectively, than in the control group; the differences were both significant at the 0.01 probability level. The egg weight in the test group was 2.36% higher than in the control group (P 〈 0.05), but the feed conversion ratios were almost the same. The eggshell thickness and strength were among the egg qualities significantly increased in ducks fed with water hyacinth. We concluded that a water hyacinth system was effective for purifying wastewater from an intensive duck farm during the water hyacinth growing season, as harvested water hyacinth had an excellent performance as duck feed. We also discussed the limitations of the experiment.
文摘The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金Projects(03JJY3078, 04JJ40032) supported by the Natural Science Foundation of Hunan Province, China project(03A006) supported by Scientific Research Fund of Hunan Provincial Education Department, China
文摘Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for high tailings dam was developed according to the results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailing dam 113.5 m high. The law of generation, diffusion and dissipation of seismic pore water pressure during and after earthquake was investigated, and the results of tailings dam’s acceleration, seismic dynamic stress and pore water pressure were obtained. The results show that the seismic stability and liquefaction resistance of high tailings dam are strengthened remarkably, and the scope and depth of liquefaction area at the top of dam are reduced greatly. The interior stress is compressive stress, the stress level of every element is less than 1.0 and the safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailing dam is greater than 1.5 according to the effective stress analysis of seismic response by finite element method. The calculated results prove that liquefaction is the main reason of seismic failure of high tailing dams, and the effect of seismic inertia forces on high tailing dams’ stability during earthquake is secondary reason.
基金the National Natural Science Foundation of China for its financial support (Nos. 41376052, 41030856, 40906024)
文摘The well-known Three Gorges Dam(TGD) within the Yangtze catchment launched its operation in 2003. The effect of the TGD operation on the sediment size on the East China Sea shelf is rarely known. High resolution(0.5 cm sampling) grain size analysis and 137 Cs and 210 Pb dating of the DH8-1 core were conducted with core collected from the distal part of a main sink for the modern Yangtze sediment entering the sea, the Min-Zhe Coastal Mud Deposits(MZCMD) on the inner East China Sea shelf. The 137 Cs dating results show that the core DH8-1 formed during 1946–2012 with a mean deposition rate of 0.65 cm yr^(-1), indicating that the 0.5 cm sampling for grain size analysis in this local area could reflect environmental changes generally on a one-year time scale. The mean grain size of DH8-1 core sediment that deposited after 2003 is significantly larger than that deposited during 1988–2002. After ruling out other possible factors, we infer that the sediment coarsening of DH8-1 core after 2003 is attributed to the TGD operation which causes the erosion of the Yangtze subaqueous delta. Specifically, the TGD operation significantly intensifies the declining trend of the Yangtze sediment loads to the sea despite no decreased water discharge, which results in extensive erosion of the Yangtze subaqueous delta. The relatively coarse sediment of the subaqueous delta is eroded and resuspended by ocean dynamics and then transported by coastal current, finally depositing on the MZCMD area. In addition, the general sediment fining of core DH8-1 that deposited during 1988–2002, comparing with 1946–1987, is mainly caused by dam construction and soil and water conservation within the Yangtze catchment. Our findings are helpful for better understanding the effects of such a huge dam as the TGD on a sediment sink like the MZCMD of such a large river as the Yangtze River.
基金Project supported by the National Natural Science Foundation of China (Nos.50579010, 50539010)the National Basic Research Program of China (973 Program) (No.2002CB412707)the National Basic Research Program of Ministry of Water Resources, China (No.CT200612)
文摘The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.
基金Projects(20120094110005,20120094130003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(51379068,51139001,51279052,51209077,51179066)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-11-0628)supported by the Program for New Century Excellent Talents in University,ChinaProjects(201201038,201101013)supported by the Public Welfare Industry Research Special Fund Project of Ministry of Water Resources of China
文摘To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.