Based on the laboratory experiments this paper presented that the primary influence factors about the electromagnetic radiation during rock fracture are the rock mechanics characters and mineral components. The brittl...Based on the laboratory experiments this paper presented that the primary influence factors about the electromagnetic radiation during rock fracture are the rock mechanics characters and mineral components. The brittle samples and samples contained quartz, pyrite, chalopyrite produce electromagnetic radiation easily. There are three fracture radiation effects. The crystal fracture effect produces the high frequency electromagnetic signals, the piezoelectric effect produces low frequency signals and the natural semiconductor effect produces middle frequency signals possessed distinct wave shapes.展开更多
H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change...H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor.展开更多
With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution,...With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution, after air, water, and noise.展开更多
Personal computers, apart from being ubiquitous in our everyday activity, very often have been object of study for eventual negative health consequences. During the recent years, a great number of schools in Albania a...Personal computers, apart from being ubiquitous in our everyday activity, very often have been object of study for eventual negative health consequences. During the recent years, a great number of schools in Albania are equipped with lab rooms for teaching computer skills. This has motivated us to carry out a campaign of measuring the intensity of electric and magnetic fields is such places in the schools of Gjirokastra. This paper presents the results of such a study for the evaluation of the possible hazard related to the exposure to this “electro-smog” of the students and teachers. This is done by comparing the measured values of physical quantities with the respective limits and standards recom-mended by scientists and established by European directives such as 2004/40/CE and 1999/519/CE.展开更多
With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide ap...With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.展开更多
The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static p...The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.展开更多
Microvessels promote proliferation of tumor cells by delivering oxygen and nutrients, but rapid growth of tumors results in unmet demands for oxygen and nutrients, thereby creating a hypoxia microenvironment. Under hy...Microvessels promote proliferation of tumor cells by delivering oxygen and nutrients, but rapid growth of tumors results in unmet demands for oxygen and nutrients, thereby creating a hypoxia microenvironment. Under hypoxic conditions, vascular endothelial cells(ECs) initiate the formation of immature and abnormal microvasculature. This results in leakage and tortuosity that facilitates tumor cell invasion, metastasis and resistance to cytotoxic treatment.Radiotherapy(RT) is a vital tumor treatment modality. Currently, more than 60% of patients with malignant tumors receive RT at certain points during their treatment. Hypoxia induced by abnormal microvessels can hamper the cytotoxic effect of ionizing radiation, particularly, stereotactic body radiotherapy(SBRT). Anti-angiogenesis(AA) agents are known to reduce and renormalize microvessels in tumors, and hence alleviate hypoxia. The combination of AA agents with SBRT may have a synergistic role in inhibiting the growth of tumors. On the contrary, large doses of irradiation may affect tumor microvessels itself. In this review, we aim to clarify the relationship between SBRT and microvessel formation in tumors. In addition, we provide a retrospective analysis of the combination therapy involving SBRT and AA agents in preclinical and clinical practice to define its role in antitumor treatment.展开更多
A general definition of quantum coherence is developed from analysis of superposition, entanglement, chemical bonding behavior, and basic phenomena of classical mechanics. Various properties of atoms can be better exp...A general definition of quantum coherence is developed from analysis of superposition, entanglement, chemical bonding behavior, and basic phenomena of classical mechanics. Various properties of atoms can be better explained if these particles are matter waves that embody a spectrum ranging from relatively coherent to decoherent states. It is demonstrated that quantum coherence so defined can comprehensively explain signal transmission in neurons and dynamics of the brain’s emergent electric field, including potential support for the claim that conscious volition is to some degree real rather than an illusion. Recent research in a physiological context suggests that electromagnetic radiation interacts with molecular structure to comprise integrated energy fields. A mechanism is proposed by which quantum coherence as accelerating electric currents in neurons may result in a broadened spectrum of electromagnetic radiation capable of interacting with molecular complexes in the brain and perhaps elsewhere in an organism to influence vibrational and structural properties. Research should investigate whether a consequent energy field is the basic perceptual substrate, with at least some additive electromagnetic wavelengths of this field involved in generating image percepts insofar as they arise from the body, and electromagnetic vibrations the signature of a more diverse phenomenon by which somewhat nondimensional features of perception such as sound, touch, taste, smell, interoceptive sensations, etc. partially arise. If examination of the brain reveals this organ to be composed of a coherence field, structured at least in part by broadened spectrums of EM radiation interacting with molecular components, this has major implications for furthering our model of the matter/mind interface and possibly physical reality in total.展开更多
In this manuscript, we will discuss about the quantum mechanical system for the movement of non-intractable particle, non-intractable particle which attends every mass state in the universe, the form of a non-intracta...In this manuscript, we will discuss about the quantum mechanical system for the movement of non-intractable particle, non-intractable particle which attends every mass state in the universe, the form of a non-intractable particle is <i>n</i> = -<i>m</i>, this manuscript defines the stable cross system for the movement of <i>n</i>-<i>i</i> particles and elementary particles with a perfect black body at centre with proofs of picture of super massive black hole, the linear hamiltonian of the cross quantum mechanical system and with this, it’s co-related matrixes, then by the use of cross system of Non-Intractable Particles defining a new right angel theorem. Then the new black body relation free from plank constant depends on non interactive mechanics and <i>m</i>, which has already mentioned in non-interactive mechanics and it’s relation with galaxies. The unique property of cross system is that it is surrounded by the energy of 10e + e always, and at last the relation between zero point energy and dark energy.展开更多
Objective:To evaluate the dose uncertainty in stereotactic body radiation therapy induced by respiratory motion using a 4D dynamic dose(4DDD)reconstruction method.Methods:A retrospective analysis was conducted on five...Objective:To evaluate the dose uncertainty in stereotactic body radiation therapy induced by respiratory motion using a 4D dynamic dose(4DDD)reconstruction method.Methods:A retrospective analysis was conducted on five lung cancer patients who received static intensitymodulated radiation therapy.The 4DDD was constructed using beam delivery log files,four-dimensional computed tomography(4DCT)scans,and treatment plans.To evaluate the impact of respiratory motion,4DDD calculations were performed with 10 starting phases for each field.A total of 270 field doses were simulated and calculated.The differences between the cumulative volume histogram in whole-course treatment and the field doses'gamma passing rate(GPR)were compared.The correlations between plan complexity metrics and the dose deviation caused by respiratory motion were evaluated independently.The phase distributions of 398 subfields were calculated and evaluated for the influence of dose rate and breathing frequency.Results:The GPRs of all fields were different among various starting phases,with the highest range from 62.20% to 76.87% for 2 mm/3%GPR.The deviation of mean point dose was(5.42±5.21)%,and the deviation in the mean dose and D98% within the internal gross tumor volume were(0.97±0.71)% and(0.77±0.53)%,respectively.There was a significant correlation between the beam aperture-to-volume(BA2V)ratio and the average 2 mm/2%GPR(R?0.601,P<0.01).Lower dose rates led to a more homogeneous distribution of phases among subfields(t?44.100,P<0.001).Conclusions:Different beam starting phases had a limited impact on the overall treatment evaluation.However,the respiratory motion could be observed to induce dose deviations using the 4DDD reconstruction model,particularly for fields with small BA2V.展开更多
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne...Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.展开更多
In this work, the spacetime distributions of the electric and magnetic fields of photon are revealed. It is first time found that the spacetime distributions of electric and magnetic fields of photon are source depend...In this work, the spacetime distributions of the electric and magnetic fields of photon are revealed. It is first time found that the spacetime distributions of electric and magnetic fields of photon are source dependent. Based on this discovery, some potential applications are discussed.展开更多
The developments of medicine always follow innovations in science and technology.In the past decade,such innovations have made cancer-related targeted therapies possible.In general,the term "targeted therapy"...The developments of medicine always follow innovations in science and technology.In the past decade,such innovations have made cancer-related targeted therapies possible.In general,the term "targeted therapy" has been used in reference to cellular and molecular level oriented therapies.However,improvements in the delivery and planning of traditional radiation therapy have also provided cancer patients more options for "targeted" treatment,notably stereotactic radiosurgery(SRS) and stereotactic body radiotherapy(SBRT).In this review,the progress and controversies of SRS and SBRT are discussed to show the role of stereotactic radiation therapy in the ever evolving multidisciplinary care of cancer patients.展开更多
文摘Based on the laboratory experiments this paper presented that the primary influence factors about the electromagnetic radiation during rock fracture are the rock mechanics characters and mineral components. The brittle samples and samples contained quartz, pyrite, chalopyrite produce electromagnetic radiation easily. There are three fracture radiation effects. The crystal fracture effect produces the high frequency electromagnetic signals, the piezoelectric effect produces low frequency signals and the natural semiconductor effect produces middle frequency signals possessed distinct wave shapes.
文摘H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor.
基金supported by the National Natural Science Foundation of China[No.31570847]
文摘With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution, after air, water, and noise.
文摘Personal computers, apart from being ubiquitous in our everyday activity, very often have been object of study for eventual negative health consequences. During the recent years, a great number of schools in Albania are equipped with lab rooms for teaching computer skills. This has motivated us to carry out a campaign of measuring the intensity of electric and magnetic fields is such places in the schools of Gjirokastra. This paper presents the results of such a study for the evaluation of the possible hazard related to the exposure to this “electro-smog” of the students and teachers. This is done by comparing the measured values of physical quantities with the respective limits and standards recom-mended by scientists and established by European directives such as 2004/40/CE and 1999/519/CE.
文摘With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.
文摘The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.
基金supported by National Natural Science Foundation of China (No. 81672982, 81602670)Sichuan Province Research Foundation for Basic Research (No. 2016JY0050)
文摘Microvessels promote proliferation of tumor cells by delivering oxygen and nutrients, but rapid growth of tumors results in unmet demands for oxygen and nutrients, thereby creating a hypoxia microenvironment. Under hypoxic conditions, vascular endothelial cells(ECs) initiate the formation of immature and abnormal microvasculature. This results in leakage and tortuosity that facilitates tumor cell invasion, metastasis and resistance to cytotoxic treatment.Radiotherapy(RT) is a vital tumor treatment modality. Currently, more than 60% of patients with malignant tumors receive RT at certain points during their treatment. Hypoxia induced by abnormal microvessels can hamper the cytotoxic effect of ionizing radiation, particularly, stereotactic body radiotherapy(SBRT). Anti-angiogenesis(AA) agents are known to reduce and renormalize microvessels in tumors, and hence alleviate hypoxia. The combination of AA agents with SBRT may have a synergistic role in inhibiting the growth of tumors. On the contrary, large doses of irradiation may affect tumor microvessels itself. In this review, we aim to clarify the relationship between SBRT and microvessel formation in tumors. In addition, we provide a retrospective analysis of the combination therapy involving SBRT and AA agents in preclinical and clinical practice to define its role in antitumor treatment.
文摘A general definition of quantum coherence is developed from analysis of superposition, entanglement, chemical bonding behavior, and basic phenomena of classical mechanics. Various properties of atoms can be better explained if these particles are matter waves that embody a spectrum ranging from relatively coherent to decoherent states. It is demonstrated that quantum coherence so defined can comprehensively explain signal transmission in neurons and dynamics of the brain’s emergent electric field, including potential support for the claim that conscious volition is to some degree real rather than an illusion. Recent research in a physiological context suggests that electromagnetic radiation interacts with molecular structure to comprise integrated energy fields. A mechanism is proposed by which quantum coherence as accelerating electric currents in neurons may result in a broadened spectrum of electromagnetic radiation capable of interacting with molecular complexes in the brain and perhaps elsewhere in an organism to influence vibrational and structural properties. Research should investigate whether a consequent energy field is the basic perceptual substrate, with at least some additive electromagnetic wavelengths of this field involved in generating image percepts insofar as they arise from the body, and electromagnetic vibrations the signature of a more diverse phenomenon by which somewhat nondimensional features of perception such as sound, touch, taste, smell, interoceptive sensations, etc. partially arise. If examination of the brain reveals this organ to be composed of a coherence field, structured at least in part by broadened spectrums of EM radiation interacting with molecular components, this has major implications for furthering our model of the matter/mind interface and possibly physical reality in total.
文摘In this manuscript, we will discuss about the quantum mechanical system for the movement of non-intractable particle, non-intractable particle which attends every mass state in the universe, the form of a non-intractable particle is <i>n</i> = -<i>m</i>, this manuscript defines the stable cross system for the movement of <i>n</i>-<i>i</i> particles and elementary particles with a perfect black body at centre with proofs of picture of super massive black hole, the linear hamiltonian of the cross quantum mechanical system and with this, it’s co-related matrixes, then by the use of cross system of Non-Intractable Particles defining a new right angel theorem. Then the new black body relation free from plank constant depends on non interactive mechanics and <i>m</i>, which has already mentioned in non-interactive mechanics and it’s relation with galaxies. The unique property of cross system is that it is surrounded by the energy of 10e + e always, and at last the relation between zero point energy and dark energy.
基金supported by National Key R&D Program of China.(No.2016YFC0105311)National Natural Science Foundation of China(No.81803047)the Fundamental Research Funds for the Central Universities of China(No.2019kfyXKJC061).
文摘Objective:To evaluate the dose uncertainty in stereotactic body radiation therapy induced by respiratory motion using a 4D dynamic dose(4DDD)reconstruction method.Methods:A retrospective analysis was conducted on five lung cancer patients who received static intensitymodulated radiation therapy.The 4DDD was constructed using beam delivery log files,four-dimensional computed tomography(4DCT)scans,and treatment plans.To evaluate the impact of respiratory motion,4DDD calculations were performed with 10 starting phases for each field.A total of 270 field doses were simulated and calculated.The differences between the cumulative volume histogram in whole-course treatment and the field doses'gamma passing rate(GPR)were compared.The correlations between plan complexity metrics and the dose deviation caused by respiratory motion were evaluated independently.The phase distributions of 398 subfields were calculated and evaluated for the influence of dose rate and breathing frequency.Results:The GPRs of all fields were different among various starting phases,with the highest range from 62.20% to 76.87% for 2 mm/3%GPR.The deviation of mean point dose was(5.42±5.21)%,and the deviation in the mean dose and D98% within the internal gross tumor volume were(0.97±0.71)% and(0.77±0.53)%,respectively.There was a significant correlation between the beam aperture-to-volume(BA2V)ratio and the average 2 mm/2%GPR(R?0.601,P<0.01).Lower dose rates led to a more homogeneous distribution of phases among subfields(t?44.100,P<0.001).Conclusions:Different beam starting phases had a limited impact on the overall treatment evaluation.However,the respiratory motion could be observed to induce dose deviations using the 4DDD reconstruction model,particularly for fields with small BA2V.
文摘Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.
文摘In this work, the spacetime distributions of the electric and magnetic fields of photon are revealed. It is first time found that the spacetime distributions of electric and magnetic fields of photon are source dependent. Based on this discovery, some potential applications are discussed.
文摘The developments of medicine always follow innovations in science and technology.In the past decade,such innovations have made cancer-related targeted therapies possible.In general,the term "targeted therapy" has been used in reference to cellular and molecular level oriented therapies.However,improvements in the delivery and planning of traditional radiation therapy have also provided cancer patients more options for "targeted" treatment,notably stereotactic radiosurgery(SRS) and stereotactic body radiotherapy(SBRT).In this review,the progress and controversies of SRS and SBRT are discussed to show the role of stereotactic radiation therapy in the ever evolving multidisciplinary care of cancer patients.