This paper presents a new fall detection method of etderly people in a room environment based on shape analysis of 3D depth images captured by a Kinect sensor. Depth images are pre- processed by a median filter both f...This paper presents a new fall detection method of etderly people in a room environment based on shape analysis of 3D depth images captured by a Kinect sensor. Depth images are pre- processed by a median filter both for background and target. The sithouette of moving individual in depth images is achieved by a subtraction method for background frames. The depth images are converted to disparity map, which is obtained by the horizontal and vertical projection histogram statistics. The initial floor plane information is obtained by V disparity map, and the floor ptane equation is estimated by the least square method. Shape information of human subject in depth images is analyzed by a set of moment functions. Coefficients of ellipses are calculated to determine the direction of individual The centroids of the human body are catculated and the angle between the human body and the floor plane is calculated. When both the distance from the centroids of the human body to the floor plane and the angle between the human body and the floor plane are tower than some threshotds, fall incident will be detected. Experiments with different failing direction are performed. Experimental results show that the proposed method can detect fall incidents effectively.展开更多
Falling is among the most harmful events older adults may encounter.With the continuous growth of the aging population in many societies,developing effective fall detection mechanisms empowered by machine learning tec...Falling is among the most harmful events older adults may encounter.With the continuous growth of the aging population in many societies,developing effective fall detection mechanisms empowered by machine learning technologies and easily integrable with existing healthcare systems becomes essential.This paper presents a new healthcare Internet of Health Things(IoHT)architecture built around an ensemble machine learning-based fall detection system(FDS)for older people.Compared to deep neural networks,the ensemble multi-stage random forest model allows the extraction of an optimal subset of fall detection features with minimal hyperparameters.The number of cascaded random forest stages is automatically optimized.This study uses a public dataset of fall detection samples called SmartFall to validate the developed fall detection system.The SmartFall dataset is collected based on the acquired measurements of the three-axis accelerometer in a smartwatch.Each scenario in this dataset is classified and labeled as a fall or a non-fall.In comparison to the three machine learning models—K-nearest neighbors(KNN),decision tree(DT),and standard random forest(SRF),the proposed ensemble classifier outperformed the other models and achieved 98.4%accuracy.The developed healthcare IoHT framework can be realized for detecting fall accidents of older people by taking security and privacy concerns into account in future work.展开更多
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ...This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring.展开更多
Human fall detection plays a vital part in the design of sensor based alarming system,aid physical therapists not only to lessen after fall effect and also to save human life.Accurate and timely identification can offe...Human fall detection plays a vital part in the design of sensor based alarming system,aid physical therapists not only to lessen after fall effect and also to save human life.Accurate and timely identification can offer quick medical ser-vices to the injured people and prevent from serious consequences.Several vision-based approaches have been developed by the placement of cameras in diverse everyday environments.At present times,deep learning(DL)models par-ticularly convolutional neural networks(CNNs)have gained much importance in the fall detection tasks.With this motivation,this paper presents a new vision based elderly fall event detection using deep learning(VEFED-DL)model.The proposed VEFED-DL model involves different stages of operations namely pre-processing,feature extraction,classification,and parameter optimization.Primar-ily,the digital video camera is used to capture the RGB color images and the video is extracted into a set of frames.For improving the image quality and elim-inate noise,the frames are processed in three levels namely resizing,augmenta-tion,and min–max based normalization.Besides,MobileNet model is applied as a feature extractor to derive the spatial features that exist in the preprocessed frames.In addition,the extracted spatial features are then fed into the gated recur-rent unit(GRU)to extract the temporal dependencies of the human movements.Finally,a group teaching optimization algorithm(GTOA)with stacked autoenco-der(SAE)is used as a binary classification model to determine the existence of fall or non-fall events.The GTOA is employed for the parameter optimization of the SAE model in such a way that the detection performance can be enhanced.In order to assess the fall detection performance of the presented VEFED-DL model,a set of simulations take place on the UR fall detection dataset and multi-ple cameras fall dataset.The experimental outcomes highlighted the superior per-formance of the presented method over the recent methods.展开更多
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga...In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.展开更多
This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest cl...This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment.展开更多
Automated falling detection is one of the important tasks in this ageing society. Such systems are supposed to have little interference on daily life. Doppler sensors have come to the front as useful?devices to detect...Automated falling detection is one of the important tasks in this ageing society. Such systems are supposed to have little interference on daily life. Doppler sensors have come to the front as useful?devices to detect human activity without using any wearable sensors. The conventional Doppler sensor based falling detection mechanism uses the features of only one sensor. This paper presents falling detection using multiple Doppler sensors. The resulting data from sensors are combined or selected to find out the falling event. The combination method, using three sensors, shows 95.5% accuracy of falling detection. Moreover, this method compensates the drawbacks of mono Doppler sensor which encounters problems when detecting movement orthogonal to irradiation directions.展开更多
The world’s elderly population is growing every year.It is easy to say that the fall is one of the major dangers that threaten them.This paper offers a Trained Model for fall detection to help the older people live c...The world’s elderly population is growing every year.It is easy to say that the fall is one of the major dangers that threaten them.This paper offers a Trained Model for fall detection to help the older people live comfortably and alone at home.The purpose of this paper is to investigate appropriate methods for diagnosing falls by analyzing the motion and shape characteristics of the human body.Several machine learning technologies have been proposed for automatic fall detection.The proposed research reported in this paper detects a moving object by using a background subtraction algorithm with a single camera.The next step is to extract the features that are very important and generally describe the human shape and show the difference between the human falls from the daily activities.These features are based on motion,changes in human shape,and oval diameters around the human and temporal head position.The features extracted from the human mask are eventually fed in to various machine learning classifiers for fall detection.Experimental results showed the efficiency and reliability of the proposed method with a fall detection rate of 81%that have been tested with UR Fall Detection dataset.展开更多
In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two came...In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two cameras.After the model is constructed,a threshold is set,and the probability for an incoming sample under the single Gaussian model is compared with that threshold to make a decision.Experimental results show that if a proper threshold is set,a good recognition rate for fall activities can be achieved.展开更多
Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real publi...Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real public health issue. France was selected by the World Health Organization to be the first country to implement a program that reduces the coverage of the dependence. Commercial automatic fall detection devices can help seniors get back on their feet faster by reducing the time of emergency procedure. Many seniors do not take advantage of this potentially life-saving technology mainly because of intrusiveness constraints. After having reminded the context and the challenges of fall detection systems, this paper presents an original device which is unobtrusive, comfortable and very effective. The hardware architecture embedded into the sole and a new fall detection algorithm based on acceleration and time thresholds are presented. The algorithm introduces a new concept of differential acceleration to eliminate some drawbacks of current systems. Tests were carried out under real life conditions by 6 young participants for different ADLs. The data were analyzed blindly. We compared the detected falls and found a 100% sensibility and more than 93% sensitivity for all participants and scenarios.展开更多
基金AcknowledgementsThis work is financially supported by the National Natural Science Foundation of China (61005015), the third National Post-Doctoral Special Foundation of China (201003280), and 2011 Shanshai city young teachers' subsidy scheme. The authors would like to thank the reviewers for their useful comments.
文摘This paper presents a new fall detection method of etderly people in a room environment based on shape analysis of 3D depth images captured by a Kinect sensor. Depth images are pre- processed by a median filter both for background and target. The sithouette of moving individual in depth images is achieved by a subtraction method for background frames. The depth images are converted to disparity map, which is obtained by the horizontal and vertical projection histogram statistics. The initial floor plane information is obtained by V disparity map, and the floor ptane equation is estimated by the least square method. Shape information of human subject in depth images is analyzed by a set of moment functions. Coefficients of ellipses are calculated to determine the direction of individual The centroids of the human body are catculated and the angle between the human body and the floor plane is calculated. When both the distance from the centroids of the human body to the floor plane and the angle between the human body and the floor plane are tower than some threshotds, fall incident will be detected. Experiments with different failing direction are performed. Experimental results show that the proposed method can detect fall incidents effectively.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the project number(IFP2021-043).
文摘Falling is among the most harmful events older adults may encounter.With the continuous growth of the aging population in many societies,developing effective fall detection mechanisms empowered by machine learning technologies and easily integrable with existing healthcare systems becomes essential.This paper presents a new healthcare Internet of Health Things(IoHT)architecture built around an ensemble machine learning-based fall detection system(FDS)for older people.Compared to deep neural networks,the ensemble multi-stage random forest model allows the extraction of an optimal subset of fall detection features with minimal hyperparameters.The number of cascaded random forest stages is automatically optimized.This study uses a public dataset of fall detection samples called SmartFall to validate the developed fall detection system.The SmartFall dataset is collected based on the acquired measurements of the three-axis accelerometer in a smartwatch.Each scenario in this dataset is classified and labeled as a fall or a non-fall.In comparison to the three machine learning models—K-nearest neighbors(KNN),decision tree(DT),and standard random forest(SRF),the proposed ensemble classifier outperformed the other models and achieved 98.4%accuracy.The developed healthcare IoHT framework can be realized for detecting fall accidents of older people by taking security and privacy concerns into account in future work.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the Project Number“NBU-FFR-2024-1092-04”.
文摘This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring.
文摘Human fall detection plays a vital part in the design of sensor based alarming system,aid physical therapists not only to lessen after fall effect and also to save human life.Accurate and timely identification can offer quick medical ser-vices to the injured people and prevent from serious consequences.Several vision-based approaches have been developed by the placement of cameras in diverse everyday environments.At present times,deep learning(DL)models par-ticularly convolutional neural networks(CNNs)have gained much importance in the fall detection tasks.With this motivation,this paper presents a new vision based elderly fall event detection using deep learning(VEFED-DL)model.The proposed VEFED-DL model involves different stages of operations namely pre-processing,feature extraction,classification,and parameter optimization.Primar-ily,the digital video camera is used to capture the RGB color images and the video is extracted into a set of frames.For improving the image quality and elim-inate noise,the frames are processed in three levels namely resizing,augmenta-tion,and min–max based normalization.Besides,MobileNet model is applied as a feature extractor to derive the spatial features that exist in the preprocessed frames.In addition,the extracted spatial features are then fed into the gated recur-rent unit(GRU)to extract the temporal dependencies of the human movements.Finally,a group teaching optimization algorithm(GTOA)with stacked autoenco-der(SAE)is used as a binary classification model to determine the existence of fall or non-fall events.The GTOA is employed for the parameter optimization of the SAE model in such a way that the detection performance can be enhanced.In order to assess the fall detection performance of the presented VEFED-DL model,a set of simulations take place on the UR fall detection dataset and multi-ple cameras fall dataset.The experimental outcomes highlighted the superior per-formance of the presented method over the recent methods.
文摘In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFP2021-043).
文摘This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment.
文摘Automated falling detection is one of the important tasks in this ageing society. Such systems are supposed to have little interference on daily life. Doppler sensors have come to the front as useful?devices to detect human activity without using any wearable sensors. The conventional Doppler sensor based falling detection mechanism uses the features of only one sensor. This paper presents falling detection using multiple Doppler sensors. The resulting data from sensors are combined or selected to find out the falling event. The combination method, using three sensors, shows 95.5% accuracy of falling detection. Moreover, this method compensates the drawbacks of mono Doppler sensor which encounters problems when detecting movement orthogonal to irradiation directions.
文摘The world’s elderly population is growing every year.It is easy to say that the fall is one of the major dangers that threaten them.This paper offers a Trained Model for fall detection to help the older people live comfortably and alone at home.The purpose of this paper is to investigate appropriate methods for diagnosing falls by analyzing the motion and shape characteristics of the human body.Several machine learning technologies have been proposed for automatic fall detection.The proposed research reported in this paper detects a moving object by using a background subtraction algorithm with a single camera.The next step is to extract the features that are very important and generally describe the human shape and show the difference between the human falls from the daily activities.These features are based on motion,changes in human shape,and oval diameters around the human and temporal head position.The features extracted from the human mask are eventually fed in to various machine learning classifiers for fall detection.Experimental results showed the efficiency and reliability of the proposed method with a fall detection rate of 81%that have been tested with UR Fall Detection dataset.
文摘In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two cameras.After the model is constructed,a threshold is set,and the probability for an incoming sample under the single Gaussian model is compared with that threshold to make a decision.Experimental results show that if a proper threshold is set,a good recognition rate for fall activities can be achieved.
文摘Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real public health issue. France was selected by the World Health Organization to be the first country to implement a program that reduces the coverage of the dependence. Commercial automatic fall detection devices can help seniors get back on their feet faster by reducing the time of emergency procedure. Many seniors do not take advantage of this potentially life-saving technology mainly because of intrusiveness constraints. After having reminded the context and the challenges of fall detection systems, this paper presents an original device which is unobtrusive, comfortable and very effective. The hardware architecture embedded into the sole and a new fall detection algorithm based on acceleration and time thresholds are presented. The algorithm introduces a new concept of differential acceleration to eliminate some drawbacks of current systems. Tests were carried out under real life conditions by 6 young participants for different ADLs. The data were analyzed blindly. We compared the detected falls and found a 100% sensibility and more than 93% sensitivity for all participants and scenarios.