We investigate the effect of strategy-homogeneity on the prisoner’s dilemma game in a square lattice. Strategy-homogeneity means that the population contains at least one connected group in which individuals maintain...We investigate the effect of strategy-homogeneity on the prisoner’s dilemma game in a square lattice. Strategy-homogeneity means that the population contains at least one connected group in which individuals maintain the same strategy at each iteration and may update according to updating rule at next iteration. The simulation results show that the introduction of strategy-homogeneity increases the cooperation in the evolutionary stable state. For any value of temptation to defect, the density of cooperators in equilibrium state increases firstly and then decreases as the level of strategy-homogeneity increases constantly, and there exists an appropriate level of strategy-homogeneity, maximizing the density of cooperators. The results may be favorable for comprehending cooperative behaviors in societies composed of connected groups with coherent strategy.展开更多
文摘We investigate the effect of strategy-homogeneity on the prisoner’s dilemma game in a square lattice. Strategy-homogeneity means that the population contains at least one connected group in which individuals maintain the same strategy at each iteration and may update according to updating rule at next iteration. The simulation results show that the introduction of strategy-homogeneity increases the cooperation in the evolutionary stable state. For any value of temptation to defect, the density of cooperators in equilibrium state increases firstly and then decreases as the level of strategy-homogeneity increases constantly, and there exists an appropriate level of strategy-homogeneity, maximizing the density of cooperators. The results may be favorable for comprehending cooperative behaviors in societies composed of connected groups with coherent strategy.