This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uni...This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.展开更多
The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first ref...The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.展开更多
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Str...In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.展开更多
Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by exp...Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by experiments and analyses that for the new methods,it is generally a bad option to compute steplengths based on the negative gradients. Thus in our algorithms, some continuous or discontinuous projected gradients are used instead to compute the steplengths. Numerical experiments on a wide variety of test problems are presented, indicating that the new methods usually outperform the PBB method.展开更多
文摘This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.
文摘The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
基金Supported by the fundamental research funds for the central universities under grant YWF-10-02-021 and by National Natural Science Foundation of China under grant 11001006 The author is very grateful to all the three anonymous referees for their constructive criticisms and useful suggestions that help to improve the paper.
文摘In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.
基金supported by the National Natural Science Foundation of China(Grant Nos.10171104,10571171&40233029).
文摘Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by experiments and analyses that for the new methods,it is generally a bad option to compute steplengths based on the negative gradients. Thus in our algorithms, some continuous or discontinuous projected gradients are used instead to compute the steplengths. Numerical experiments on a wide variety of test problems are presented, indicating that the new methods usually outperform the PBB method.