The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness...The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.展开更多
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
An NT-MT combined method based on nodal test (NT) and measurement test (MT) is developed for gross error detection and data reconciliation for industrial application. The NT-MT combined method makes use of both NT and...An NT-MT combined method based on nodal test (NT) and measurement test (MT) is developed for gross error detection and data reconciliation for industrial application. The NT-MT combined method makes use of both NT and MT tests and this combination helps to overcome the defects in the respective methods. It also avoids any artificial manipulation and eliminates the huge combinatorial problem that is created in the combined method based on the nodal test in the case of more than one gross error for a large process system. Serial compensation strategy is also used to avoid the decrease of the coefficient matrix rank during the computation of the proposed method. Simulation results show that the proposed method is very effective and possesses good performance.展开更多
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s...The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.展开更多
The capability of error detection of patient-specific QA tools plays an important role in verifying MLC motion accuracy. The goal of this study was to investigate the capability in error detection of portal dosimetry,...The capability of error detection of patient-specific QA tools plays an important role in verifying MLC motion accuracy. The goal of this study was to investigate the capability in error detection of portal dosimetry, MapCHECK2 and MatriXX QA tools in IMRT plans. The 9 fields IMRT for 4 head and neck plans and 7 fields IMRT for 4 prostate plans were selected for the error detection of QA devices. The measurements were undertaken for the original plan and the modified plans, where the known errors were introduced for increasing and decreasing of prescribed dose (±2%, ±4% and ±6%) and position shifted in X-axis and Y-axis (±1, ±2, ±3 and ±5 mm). After measurement, the results were compared between calculated and measured values using gamma analysis at 3%/3 mm criteria. The average gamma pass for no errors introduced in head and neck plans was 96.9%, 98.6%, and 98.8%, while prostate plans presented 99.4%, 99.0%, and 99.7%, for portal dosimetry, MapCHECK2 and MatriXX system, respectively. In head and neck plan, the shifted error detections were 1 mm for portal dosimetry, 2 mm for MapCHECK2, and 3 mm for MatriXX system. In prostate plan, the shifted error detections were 2 mm for portal dosimetry, 3 mm for MapCHECK2, and 5 mm for MatriXX system. For the dose error detection, the portal dosimetry system could detect at 2% dose deviation in head and neck and 4% in prostate plans, while other two devices could detect at 4% dose deviation in both head and neck and prostate plans. Portal dosimetry shows slightly more capability to detect the error compared with MapCHECK2 and MatriXX system, especially in the complicated plan. It may be due to higher resolution of the detector;however, all three-detector types can detect various errors and can be used for patient-specific IMRT QA.展开更多
Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the availa...Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the available datasets contain insufficient examples for training classifiers;the common cure is to seek large amounts of training samples from unlabeled data,but such data sets often contain many mislabeled samples,which will degrade the performance of classifiers.Therefore,this study proposes a novel error data detection approach suitable for reducing noise in unlabeled biomedical event data.First,we construct the mislabeled dataset through error data analysis with the development dataset.The sample pairs’vector representations are then obtained by the means of sequence patterns and the joint model of convolutional neural network and long short-term memory recurrent neural network.Following this,the sample identification strategy is proposed,using error detection based on pair representation for unlabeled data.With the latter,the selected samples are added to enrich the training dataset and improve the classification performance.In the BioNLP Shared Task GENIA,the experiments results indicate that the proposed approach is competent in extract the biomedical event from biomedical literature.Our approach can effectively filter some noisy examples and build a satisfactory prediction model.展开更多
Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing an...Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing and Mallat decomposition levels decision are discussed. An effective deformation signal extracting method is proposed, that is wavelet noise reduction technique considering gross error recovery, which combines wavelet multi-resolution gross error detection results. Time position recognizing of gross errors and their repairing performance are realized. In the experiment, compactly supported orthogonal wavelet with short support block is more efficient than the longer one when discerning gross errors, which can obtain more finely analyses. And the shape of discerned gross error of short support wavelet is simpler than that of the longer one. Meanwhile, the time scale is easier to identify.展开更多
The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-...The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.展开更多
Due to some shortcomings in the current multiple hypothesis solution separation advanced receiver autonomous integrity monitoring(MHSS ARAIM)algorithm,such as the weaker robustness,a number of computational subsets wi...Due to some shortcomings in the current multiple hypothesis solution separation advanced receiver autonomous integrity monitoring(MHSS ARAIM)algorithm,such as the weaker robustness,a number of computational subsets with the larger computational load,a method combining MHSS ARAIM with gross error detection is proposed in this paper.The gross error detection method is used to identify and eliminate the gross data in the original data first,then the MHSS ARAIM algorithm is used to deal with the data after the gross error detection.Therefore,this makes up for the weakness of the MHSS ARAIM algorithm.With the data processing and analysis from several international GNSS service(IGS)and international GNSS monitoring and assessment system(iGMAS)stations,the results show that this new algorithm is superior to MHSS ARAIM in the localizer performance with vertical guidance down to 200 feet service(LPV-200)when using GPS and BDS measure data.Under the assumption of a single-faulty satellite,the effective monitoring threshold(EMT)is improved about 22.47%and 9.63%,and the vertical protection level(VPL)is improved about 32.28%and 12.98%for GPS and BDS observations,respectively.Moreover,under the assumption of double-faulty satellites,the EMT is improved about 80.85%and 29.88%,and the VPL is improved about 49.66%and 18.24%for GPS and BDS observations,respectively.展开更多
This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect transient faults. Soft errors damage the control flow and data of programs and designers usually use h...This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect transient faults. Soft errors damage the control flow and data of programs and designers usually use hardware-based solutions to handle them. Software-based techniques for soft error detection force less cost and delay to systems and do not change their configuration. Therefore, these kinds of methods are appropriate alternatives for hardware-based techniques. SEDSR has two separate parts for data and control flow errors detection. Fault injection method is used to compare SEDSR with previous methods of this field based on the new parameter of “Evaluation Factor” that takes in account fault coverage, memory and performance overheads. These parameters are important in real time safety critical applications. Experimental results on SPEC2000 and some traditional benchmarks of this field show that SEDSR is much better than previous methods of this field. SEDSR’s evaluation factor is about 50% better than other methods of this field. These results show its success in satisfaction of the existing tradeoff between fault coverage, performance and memory overheads.展开更多
Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal c...Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal com- ponent test (PCT) is non-robust and can be very sensitive to one or more outliers. In this paper, a Huber function liked robust weight factor was added in the collective chi-square test to eliminate the influence of gross errors on the PCT. Meanwhile, robust chi-square test was applied to modified simultaneous estimation of gross error (MSEGE) strategy to detect and identify multiple gross errors. Simulation results show that the proposed robust test can reduce the possibility of type Ⅱ errors effectively. Adding robust chi-square test into MSEGE does not obviously improve the power of multiple gross error identification, the proposed approach considers the influence of outliers on hypothesis statistic test and is more reasonable.展开更多
Error coding is suited when the transmission channel is noisy. This is the case of wireless communication. So to provide a reliable digital data transmission, we should use error detection and correction algorithms. I...Error coding is suited when the transmission channel is noisy. This is the case of wireless communication. So to provide a reliable digital data transmission, we should use error detection and correction algorithms. In this paper, we constructed a simulation study for four detection algorithms. The first three methods—hamming, LRC, and parity are common techniques in networking while the fourth is a proposed one called Signature. The results show that, the hamming code is the best one in term of detection but the worst one in term of execution time. Parity, LRC and signature have the same ability in detecting error, while the signature has a preference than all others methods in term of execution time.展开更多
A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Ak...A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.展开更多
The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techni...The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techniques. A theoretical analysis of establishing these types of errors was made and compared to determination of False Positive, False Negative, True Positive and True Negative. Experimental laboratory detection methods used to detect Cryptosporidium spp. were used to highlight the relationship between hypothesis testing, sensitivity, specificity and predicted values. The study finds that, sensitivity and specificity for the two laboratory methods used for Cryptosporidium detection were low hence lowering the probability of detecting a “false null hypothesis” for the presence of cryptosporidium in the water samples using either Microscopic or PCR. Nevertheless, both procedures for cryptosporidium detection had higher “true negatives” increasing its probability of failing to reject a “true null hypothesis” with specificity of 1.00 for both Microscopic and PCR laboratory detection methods.展开更多
Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,po...Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.展开更多
Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE ...Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.展开更多
The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, t...The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.展开更多
文摘The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金Supported by the National Creative Research Groups Science Foundation of China (No.60421002) and the National "TenthFive-Year" Science and Technology Research Program of China (2004BA204B08).
文摘An NT-MT combined method based on nodal test (NT) and measurement test (MT) is developed for gross error detection and data reconciliation for industrial application. The NT-MT combined method makes use of both NT and MT tests and this combination helps to overcome the defects in the respective methods. It also avoids any artificial manipulation and eliminates the huge combinatorial problem that is created in the combined method based on the nodal test in the case of more than one gross error for a large process system. Serial compensation strategy is also used to avoid the decrease of the coefficient matrix rank during the computation of the proposed method. Simulation results show that the proposed method is very effective and possesses good performance.
基金supported by the National Natural Science Foundation of China(No.52174021)Key Research and Develop-ment Project of Hainan Province(No.ZDYF2022GXJS 003).
文摘The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.
文摘The capability of error detection of patient-specific QA tools plays an important role in verifying MLC motion accuracy. The goal of this study was to investigate the capability in error detection of portal dosimetry, MapCHECK2 and MatriXX QA tools in IMRT plans. The 9 fields IMRT for 4 head and neck plans and 7 fields IMRT for 4 prostate plans were selected for the error detection of QA devices. The measurements were undertaken for the original plan and the modified plans, where the known errors were introduced for increasing and decreasing of prescribed dose (±2%, ±4% and ±6%) and position shifted in X-axis and Y-axis (±1, ±2, ±3 and ±5 mm). After measurement, the results were compared between calculated and measured values using gamma analysis at 3%/3 mm criteria. The average gamma pass for no errors introduced in head and neck plans was 96.9%, 98.6%, and 98.8%, while prostate plans presented 99.4%, 99.0%, and 99.7%, for portal dosimetry, MapCHECK2 and MatriXX system, respectively. In head and neck plan, the shifted error detections were 1 mm for portal dosimetry, 2 mm for MapCHECK2, and 3 mm for MatriXX system. In prostate plan, the shifted error detections were 2 mm for portal dosimetry, 3 mm for MapCHECK2, and 5 mm for MatriXX system. For the dose error detection, the portal dosimetry system could detect at 2% dose deviation in head and neck and 4% in prostate plans, while other two devices could detect at 4% dose deviation in both head and neck and prostate plans. Portal dosimetry shows slightly more capability to detect the error compared with MapCHECK2 and MatriXX system, especially in the complicated plan. It may be due to higher resolution of the detector;however, all three-detector types can detect various errors and can be used for patient-specific IMRT QA.
基金This work was supported by the National Natural Science Foundation of China(No.61672301)Jilin Provincial Science&Technology Development(20180101054JC)+1 种基金Science and Technology Innovation Guide Project of Inner Mongolia Autonomous Region of China(2017)Talent Development Fund of Jilin Province(2018).
文摘Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the available datasets contain insufficient examples for training classifiers;the common cure is to seek large amounts of training samples from unlabeled data,but such data sets often contain many mislabeled samples,which will degrade the performance of classifiers.Therefore,this study proposes a novel error data detection approach suitable for reducing noise in unlabeled biomedical event data.First,we construct the mislabeled dataset through error data analysis with the development dataset.The sample pairs’vector representations are then obtained by the means of sequence patterns and the joint model of convolutional neural network and long short-term memory recurrent neural network.Following this,the sample identification strategy is proposed,using error detection based on pair representation for unlabeled data.With the latter,the selected samples are added to enrich the training dataset and improve the classification performance.In the BioNLP Shared Task GENIA,the experiments results indicate that the proposed approach is competent in extract the biomedical event from biomedical literature.Our approach can effectively filter some noisy examples and build a satisfactory prediction model.
基金Supported by Specialized Research Fundfor the Doctoral Programof Higher Educationin China(No.20040290503) Science and Technology Fundationof CUMT(No.2005B020) .
文摘Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing and Mallat decomposition levels decision are discussed. An effective deformation signal extracting method is proposed, that is wavelet noise reduction technique considering gross error recovery, which combines wavelet multi-resolution gross error detection results. Time position recognizing of gross errors and their repairing performance are realized. In the experiment, compactly supported orthogonal wavelet with short support block is more efficient than the longer one when discerning gross errors, which can obtain more finely analyses. And the shape of discerned gross error of short support wavelet is simpler than that of the longer one. Meanwhile, the time scale is easier to identify.
基金Supported by the National High Technology Research and Development Program of China (2006AA04Z176)
文摘The detection and identification of gross errors, especially measurement bias, plays a vital role in data reconciliation for nonlinear dynamic systems. Although parameter estimation method has been proved to be a pow-erful tool for bias identification, without a reliable and efficient bias detection strategy, the method is limited in ef-ficiency and cannot be applied widely. In this paper, a new bias detection strategy is constructed to detect the pres-ence of measurement bias and its occurrence time. With the help of this strategy, the number of parameters to be es-timated is greatly reduced, and sequential detections and iterations are also avoided. In addition, the number of de-cision variables of the optimization model is reduced, through which the influence of the parameters estimated is reduced. By incorporating the strategy into the parameter estimation model, a new methodology named IPEBD (Improved Parameter Estimation method with Bias Detection strategy) is constructed. Simulation studies on a con-tinuous stirred tank reactor (CSTR) and the Tennessee Eastman (TE) problem show that IPEBD is efficient for eliminating random errors, measurement biases and outliers contained in dynamic process data.
基金National Natural Science Foundation of China(No.4130403341504006+2 种基金41604001)The Grand Projects of the Beidou-2 System(No.GFZX0301040308)The Foundation of State Key Laboratory of Geo-information Engineering(No.SKLGIE2017-Z-2-1)。
文摘Due to some shortcomings in the current multiple hypothesis solution separation advanced receiver autonomous integrity monitoring(MHSS ARAIM)algorithm,such as the weaker robustness,a number of computational subsets with the larger computational load,a method combining MHSS ARAIM with gross error detection is proposed in this paper.The gross error detection method is used to identify and eliminate the gross data in the original data first,then the MHSS ARAIM algorithm is used to deal with the data after the gross error detection.Therefore,this makes up for the weakness of the MHSS ARAIM algorithm.With the data processing and analysis from several international GNSS service(IGS)and international GNSS monitoring and assessment system(iGMAS)stations,the results show that this new algorithm is superior to MHSS ARAIM in the localizer performance with vertical guidance down to 200 feet service(LPV-200)when using GPS and BDS measure data.Under the assumption of a single-faulty satellite,the effective monitoring threshold(EMT)is improved about 22.47%and 9.63%,and the vertical protection level(VPL)is improved about 32.28%and 12.98%for GPS and BDS observations,respectively.Moreover,under the assumption of double-faulty satellites,the EMT is improved about 80.85%and 29.88%,and the VPL is improved about 49.66%and 18.24%for GPS and BDS observations,respectively.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA040308), National Natural Science Foundation of China (60736021), and the National Creative Research Groups Science Foundation of China (60721062)
文摘This paper presents a new method for soft error detection using software redundancy (SEDSR) that is able to detect transient faults. Soft errors damage the control flow and data of programs and designers usually use hardware-based solutions to handle them. Software-based techniques for soft error detection force less cost and delay to systems and do not change their configuration. Therefore, these kinds of methods are appropriate alternatives for hardware-based techniques. SEDSR has two separate parts for data and control flow errors detection. Fault injection method is used to compare SEDSR with previous methods of this field based on the new parameter of “Evaluation Factor” that takes in account fault coverage, memory and performance overheads. These parameters are important in real time safety critical applications. Experimental results on SPEC2000 and some traditional benchmarks of this field show that SEDSR is much better than previous methods of this field. SEDSR’s evaluation factor is about 50% better than other methods of this field. These results show its success in satisfaction of the existing tradeoff between fault coverage, performance and memory overheads.
基金The National Natural Science Foundation of China(No 60504033)
文摘Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal com- ponent test (PCT) is non-robust and can be very sensitive to one or more outliers. In this paper, a Huber function liked robust weight factor was added in the collective chi-square test to eliminate the influence of gross errors on the PCT. Meanwhile, robust chi-square test was applied to modified simultaneous estimation of gross error (MSEGE) strategy to detect and identify multiple gross errors. Simulation results show that the proposed robust test can reduce the possibility of type Ⅱ errors effectively. Adding robust chi-square test into MSEGE does not obviously improve the power of multiple gross error identification, the proposed approach considers the influence of outliers on hypothesis statistic test and is more reasonable.
文摘Error coding is suited when the transmission channel is noisy. This is the case of wireless communication. So to provide a reliable digital data transmission, we should use error detection and correction algorithms. In this paper, we constructed a simulation study for four detection algorithms. The first three methods—hamming, LRC, and parity are common techniques in networking while the fourth is a proposed one called Signature. The results show that, the hamming code is the best one in term of detection but the worst one in term of execution time. Parity, LRC and signature have the same ability in detecting error, while the signature has a preference than all others methods in term of execution time.
基金Project supported by the National Creative Research Groups Science Foundation of China (No. 60421002)the National "Tenth Five-Year" Science and Technology Research Program of China (No.2004BA204B08)
文摘A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.
文摘The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techniques. A theoretical analysis of establishing these types of errors was made and compared to determination of False Positive, False Negative, True Positive and True Negative. Experimental laboratory detection methods used to detect Cryptosporidium spp. were used to highlight the relationship between hypothesis testing, sensitivity, specificity and predicted values. The study finds that, sensitivity and specificity for the two laboratory methods used for Cryptosporidium detection were low hence lowering the probability of detecting a “false null hypothesis” for the presence of cryptosporidium in the water samples using either Microscopic or PCR. Nevertheless, both procedures for cryptosporidium detection had higher “true negatives” increasing its probability of failing to reject a “true null hypothesis” with specificity of 1.00 for both Microscopic and PCR laboratory detection methods.
基金funded by the National Natural Science Foundation of China(Grant No.U19A2072)the Provincial Department of Education Postgraduate Scientific Research Innovation Project of Hunan Province of China(Grant No.QL20210007)the Ministerial Level Postgraduate Funding Project of China(Grant No.JY2021A007).
文摘Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.
基金supported by the National Hightech R&D Program of China(2014AA01A704)the Natural Science Foundation of China(61201135)111 Project(B08038)
文摘Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.
基金supported by the National Natural Science Foundation of China(61201391)
文摘The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals.