In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values o...The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.展开更多
Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended g...Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.展开更多
By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode op...By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.展开更多
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The trav...In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.展开更多
A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method.The solution includes an arbitrary f...A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method.The solution includes an arbitrary function of an independent variable.Based on the solution,two hyperbolic functions are chosen to construct new solitons.Novel single-loop-like and double-loop-like solitons are found for the equation.展开更多
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This me...In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method,we apply this method to solve the space-time fractional Whitham–Broer–Kaup(WBK) equations and the nonlinear fractional Sharma–Tasso–Olever(STO) equation, and as a result, some new exact solutions for them are obtained.展开更多
Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebrai...Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.展开更多
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
基金The project supported in part by the Natural Science Foundation of Education Department of Henan Province of China under Grant No. 2006110002 and the Science Foundations of Henan University of Science and Technology under Grant Nos. 2004ZD002 and 2006ZY001
文摘The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.
文摘Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrodinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.
基金Supported by National Natural Science Foundation of China under Grant No. 10671172
文摘In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.
基金Project supported by the Scientific Research Common Program of Beijing Municipal Commission of Education,China (Grant No. KM201010011001),PHR(Grant No. 201106206)the Funding Project for Innovation on Science,Technology and Graduate Education in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality,China (Grant Nos. 201098,PXM2012 014213 000087,PXM2012 014213 000037,and PXM2012 014213 000079)
文摘A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method.The solution includes an arbitrary function of an independent variable.Based on the solution,two hyperbolic functions are chosen to construct new solitons.Novel single-loop-like and double-loop-like solitons are found for the equation.
基金Supported by Natural Science Foundation of Shandong Province of China under Grant No.ZR2013AQ009National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No.201310433031Doctoral initializing Foundation of Shandong University of Technology of China under Grant No.4041-413030
文摘In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method,we apply this method to solve the space-time fractional Whitham–Broer–Kaup(WBK) equations and the nonlinear fractional Sharma–Tasso–Olever(STO) equation, and as a result, some new exact solutions for them are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the State Key Basic Research Development Program under Grant No.G1998030600
文摘Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.