This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete mu...This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.展开更多
By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distin...By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distinct cases. Moreover, the multi- soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.展开更多
Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding...Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding results and the Backlund transformations can be obtained on three conditioners which include Caudrey-Dodd-Cibbon- Sawada-Kotera equation, the Lax equation and the Kaup-kupershmidt equation.展开更多
The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we invest...The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we investigate the periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation by virtue of the Hirota bilinear form. Several novel analytic solutions for such a model are obtained and verified with the help of symbolic computation.展开更多
In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The techni...In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The technique is based on the application of Laplace transform to some fifth-order Kdv equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of four examples and results of the present technique have closed agreement with approximate solutions obtained with the help of (LDM).展开更多
A new type of coupled Korteweg de-Vries equation is found to be Painlevé-integrable. The new model is a special case which can be used to describe two-layer fluids with different dispersion relations.
In this paper,we show by Hilbert Uniqueness Method that the boundary value problem of fifth-order KdV equation{y_(t)-y_(5x)=0,(x,t)∈(0,2π)×(0,T),y(t,2π)-y(t,0)=h_(0)(t),y_(x)(t,2π)-y_(x)(t,0)=h_(1)(t),y_(2x)(...In this paper,we show by Hilbert Uniqueness Method that the boundary value problem of fifth-order KdV equation{y_(t)-y_(5x)=0,(x,t)∈(0,2π)×(0,T),y(t,2π)-y(t,0)=h_(0)(t),y_(x)(t,2π)-y_(x)(t,0)=h_(1)(t),y_(2x)(t,2π)-y_(2x)(t,0)=h_(2)(t),y_(3x)(t,2π)-y_(3x)(t,0)=h_(3)(t),y_(4x)(t,2π)-y_(4x)(t,0)=h_(4)(t),(with boundary data as control inputs)is exact controllability.展开更多
In this paper,we consider the numerics of the dispersion-managed Kortewegde Vries(DM-KdV)equation for describingwave propagations in inhomogeneous media.The DM-KdV equation contains a variable dispersion map with disc...In this paper,we consider the numerics of the dispersion-managed Kortewegde Vries(DM-KdV)equation for describingwave propagations in inhomogeneous media.The DM-KdV equation contains a variable dispersion map with discontinuity,which makes the solution non-smooth in time.We formally analyze the convergence order reduction problems of some popular numerical methods including finite difference and time-splitting for solving the DM-KdV equation,where a necessary constraint on the time step has been identified.Then,two exponential-type dispersionmap integrators up to second order accuracy are derived,which are efficiently incorporatedwith the Fourier pseudospectral discretization in space,and they can converge regardless the discontinuity and the step size.Numerical comparisons show the advantage of the proposed methods with the application to solitary wave dynamics and extension to the fast&strong dispersion-management regime.展开更多
In this work we study three extended higher-order KdV-type equations.The Lax-type equation,the Sawada-Kotera-type equation and the CDG-type equation are derived from the extended KdV equation.We use the simplified Hir...In this work we study three extended higher-order KdV-type equations.The Lax-type equation,the Sawada-Kotera-type equation and the CDG-type equation are derived from the extended KdV equation.We use the simplified Hirota’s direct method to derive multiple soliton solutions for each equation.We show that each model gives multiple soliton solutions,where the structures of the obtained solutions differ from the solutions of the canonical form of these equations.展开更多
Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics,
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572119, 10772147 and 10632030)the Doctoral Program Foundation of Education Ministry of China (Grant No 20070699028)+1 种基金the National Natural Science Foundation of Shaanxi Province of China (Grant No 2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11201290 and 71103118)
文摘By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distinct cases. Moreover, the multi- soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030,11075055,and 90718041the Shanghai Leading Academic Discipline Project,China under Grant No.B412+1 种基金the Program for Changjiang Scholars,the Innovative Research Team in University of Ministry of Education of China under Grant No.IRT 0734the K.C.Wong Magna Fund in Ningbo University
文摘Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding results and the Backlund transformations can be obtained on three conditioners which include Caudrey-Dodd-Cibbon- Sawada-Kotera equation, the Lax equation and the Kaup-kupershmidt equation.
文摘The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we investigate the periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation by virtue of the Hirota bilinear form. Several novel analytic solutions for such a model are obtained and verified with the help of symbolic computation.
文摘In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The technique is based on the application of Laplace transform to some fifth-order Kdv equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of four examples and results of the present technique have closed agreement with approximate solutions obtained with the help of (LDM).
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90203001, 10475055, 90503006, and 10547124The authors are indebted to Dr. F. Huang and Prof. Y. Chen for their helpful discussions.
文摘A new type of coupled Korteweg de-Vries equation is found to be Painlevé-integrable. The new model is a special case which can be used to describe two-layer fluids with different dispersion relations.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY18A010024)National Natural Science Foundation of China(No.12075208).
文摘In this paper,we show by Hilbert Uniqueness Method that the boundary value problem of fifth-order KdV equation{y_(t)-y_(5x)=0,(x,t)∈(0,2π)×(0,T),y(t,2π)-y(t,0)=h_(0)(t),y_(x)(t,2π)-y_(x)(t,0)=h_(1)(t),y_(2x)(t,2π)-y_(2x)(t,0)=h_(2)(t),y_(3x)(t,2π)-y_(3x)(t,0)=h_(3)(t),y_(4x)(t,2π)-y_(4x)(t,0)=h_(4)(t),(with boundary data as control inputs)is exact controllability.
基金supported by the National Key Research and Development Program of China(No.2020YFA0714200)the Natural Science Foundation of Hubei Province No.2019CFA007,the NSFC 11901440。
文摘In this paper,we consider the numerics of the dispersion-managed Kortewegde Vries(DM-KdV)equation for describingwave propagations in inhomogeneous media.The DM-KdV equation contains a variable dispersion map with discontinuity,which makes the solution non-smooth in time.We formally analyze the convergence order reduction problems of some popular numerical methods including finite difference and time-splitting for solving the DM-KdV equation,where a necessary constraint on the time step has been identified.Then,two exponential-type dispersionmap integrators up to second order accuracy are derived,which are efficiently incorporatedwith the Fourier pseudospectral discretization in space,and they can converge regardless the discontinuity and the step size.Numerical comparisons show the advantage of the proposed methods with the application to solitary wave dynamics and extension to the fast&strong dispersion-management regime.
文摘In this work we study three extended higher-order KdV-type equations.The Lax-type equation,the Sawada-Kotera-type equation and the CDG-type equation are derived from the extended KdV equation.We use the simplified Hirota’s direct method to derive multiple soliton solutions for each equation.We show that each model gives multiple soliton solutions,where the structures of the obtained solutions differ from the solutions of the canonical form of these equations.
基金Project supported by the National Natural Science Foundation of China
文摘Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics,