In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution...1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the...In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.展开更多
Let K(r)be the complete elliptic integrals of the first kind for r∈(0,1)and f_(p)(x)=[(1−x)^(p)K(√x)].Using the recurrence method,we find the necessary and sufficient conditions for the functions−f′_(p),ln f_(p),−(...Let K(r)be the complete elliptic integrals of the first kind for r∈(0,1)and f_(p)(x)=[(1−x)^(p)K(√x)].Using the recurrence method,we find the necessary and sufficient conditions for the functions−f′_(p),ln f_(p),−(ln f_(p))^((i))(i=1,2,3)to be absolutely monotonic on(0,1).As applications,we establish some new bounds for the ratios and the product of two complete integrals of the first kind,including the double inequalities exp[r^(2)(1−r^(2))/^(64)]/(1+r)^(1/4)<K(r)/K(√r)<exp[−r(1−r)/4],π/2 exp[θ0(1−2r^(2))]<π/2 K(r′)/K(r)<π/2(r′/r)^(p)exp[θ_(p)(1−2r^(2))],K^(2)(1/√2)≤K(r)K(r′)≤1/√2rr′K^(2)(1/√2)for r∈2(0,1)and p≥13/32,where r′=√1−r^(2) and θ_(p)=2Γ(3/4)^(4)/π^(2)−p.展开更多
With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation o...With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in the boundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thus getting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are in general complicated. The numerical examples were given in three dimensional elasticity, verifying the effectiveness of the proposed approach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.展开更多
The inverse problem of wave equation is the importance of study not only in seismic prospecting but also in applied mathematics. With the development of the research, the inverse methods of 1 - D wave equations have b...The inverse problem of wave equation is the importance of study not only in seismic prospecting but also in applied mathematics. With the development of the research, the inverse methods of 1 - D wave equations have been trending towards the multiple parameters inversion . We have obtained an inverse method with double -parameter, in which medium density and wave velocity can be derived simultaneously. In this paper, to increase the inverse accuracy, the method is improved as follows. Firstly, the formula in which the Green Function is omitted are derived and used. Secondly, the regularizing method is reasonable used by choosing the stable function. With the new method, we may derive elastic parameter and medium density or medium density and wave velocity. Thus, lithology parameters for seismic prospecting may be obtained.After comparing the derived values from the new method with that from previous method, we obtain the new method through which substantially improve the derived accuracy . The new method has been applied to real depths inversion for sedimentary strata and volcanic rock strata in Chaoyanggou Terrace of Songliao Basin in eastern China. According to the inverse results,the gas - bearing beds are determlned.展开更多
In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to po...In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient.展开更多
We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the assoc...We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.展开更多
While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approxima...While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting ...We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.展开更多
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of ...The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.展开更多
The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equatio...The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.展开更多
Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first...Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy O(h0^3) and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power hi^3 (i = 1, 2, ..., d) are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained.展开更多
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
文摘1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
文摘In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
文摘Let K(r)be the complete elliptic integrals of the first kind for r∈(0,1)and f_(p)(x)=[(1−x)^(p)K(√x)].Using the recurrence method,we find the necessary and sufficient conditions for the functions−f′_(p),ln f_(p),−(ln f_(p))^((i))(i=1,2,3)to be absolutely monotonic on(0,1).As applications,we establish some new bounds for the ratios and the product of two complete integrals of the first kind,including the double inequalities exp[r^(2)(1−r^(2))/^(64)]/(1+r)^(1/4)<K(r)/K(√r)<exp[−r(1−r)/4],π/2 exp[θ0(1−2r^(2))]<π/2 K(r′)/K(r)<π/2(r′/r)^(p)exp[θ_(p)(1−2r^(2))],K^(2)(1/√2)≤K(r)K(r′)≤1/√2rr′K^(2)(1/√2)for r∈2(0,1)and p≥13/32,where r′=√1−r^(2) and θ_(p)=2Γ(3/4)^(4)/π^(2)−p.
文摘With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper. The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in the boundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thus getting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are in general complicated. The numerical examples were given in three dimensional elasticity, verifying the effectiveness of the proposed approach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.
文摘The inverse problem of wave equation is the importance of study not only in seismic prospecting but also in applied mathematics. With the development of the research, the inverse methods of 1 - D wave equations have been trending towards the multiple parameters inversion . We have obtained an inverse method with double -parameter, in which medium density and wave velocity can be derived simultaneously. In this paper, to increase the inverse accuracy, the method is improved as follows. Firstly, the formula in which the Green Function is omitted are derived and used. Secondly, the regularizing method is reasonable used by choosing the stable function. With the new method, we may derive elastic parameter and medium density or medium density and wave velocity. Thus, lithology parameters for seismic prospecting may be obtained.After comparing the derived values from the new method with that from previous method, we obtain the new method through which substantially improve the derived accuracy . The new method has been applied to real depths inversion for sedimentary strata and volcanic rock strata in Chaoyanggou Terrace of Songliao Basin in eastern China. According to the inverse results,the gas - bearing beds are determlned.
文摘In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient.
文摘We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.
文摘While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
基金Supported in part by the Natural Science Foundation of China under grants 10371137and 10201034Foundation of Doctoral Program of National Higher Education of China under under grant 20030558008Guangdong Provincial Natural Science Foundation of China u
文摘We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.
文摘The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
基金supported by CERG Grants of Hong Kong Research Grant CouncilFRG grants of Hong Kong Baptist University
文摘The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.
基金Supported by Natioal Science Foundation of China (10171073).
文摘Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy O(h0^3) and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power hi^3 (i = 1, 2, ..., d) are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained.