In this paper we define a fixed point index theory for locally Lip., completely continuous and weakly inward mappings defined on closed convex sets in general Banach spaces where no other artificial conditions are imp...In this paper we define a fixed point index theory for locally Lip., completely continuous and weakly inward mappings defined on closed convex sets in general Banach spaces where no other artificial conditions are imposed. This makes ns to deal with these kinds of mappings more easily. As obvious applications, some results in [3],[5],[7],[9],[10] are deepened and extended.展开更多
In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positiv...In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positive half-line are investigated upper and lower solution techniques combined with fixed point index on cones in priate Banach spaces. The results complement recent ones in the literature. We use appropriate Banach spaces. The results complement recent ones in the literature.展开更多
S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate b...S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate boundary conditions, under which the fixed point index for i(A, Ω, p) is equal to nonzero, where i(A, Ω, p) is the completely continuous and weakly inward mapping. Correspondingly, we can obtain many new fixed point theorems of the completely continuous and weakly inward mapping, which generalize some famous theorems such as Rothe's theorem, Altman's theorem, Petryshyn's theorem etc. in the case of weakly inward mappings. In addition, our conclusions extend the famous fixed point theorem of cone expansion and compression to the case of weakly inward mappings. Moreover, the main results contain and generalize the corresponding results in the recent work[2].展开更多
By fixed point index theory and a result obtained by Amann, existence of the solution for a class of nonlinear operator equations x = Ax is discussed. Under suitable conditions, a couple of positive and negative solut...By fixed point index theory and a result obtained by Amann, existence of the solution for a class of nonlinear operator equations x = Ax is discussed. Under suitable conditions, a couple of positive and negative solutions are obtained. Finally, the abstract result is applied to nonlinear Sturm-Liouville boundary value problem, and at least four distinct solutions are obtained.展开更多
In this paper, a fractional multi-point boundary value problem is considered. By using the fixed point index theory and Krein-Rutman theorem, some results on existence are obtained.
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
This paper discusses both the nonexistence of positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x, y) is superlinear in y at y = 0 and the existence of multiple pos...This paper discusses both the nonexistence of positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x, y) is superlinear in y at y = 0 and the existence of multiple positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x,y) is superlinear in x at +∞.展开更多
In this paper, the famous Amann three-solution theorem is generalized. Multiplicity question of fixed points for nonlinear operators via two coupled parallel sub-super solutions is studied. Under suitable conditions, ...In this paper, the famous Amann three-solution theorem is generalized. Multiplicity question of fixed points for nonlinear operators via two coupled parallel sub-super solutions is studied. Under suitable conditions, the existence of at least six distinct fixed points of nonlinear operators is proved. The theoretical results are then applied to nonlinear system of Hammerstein integral equations.展开更多
The cone theorem and the fixed point index are used to investigate the positive solution of singular superlinear boundary value problem for a fourth order nonlinear differential equation.
In this paper, by the fixed point index theory, the number of fixed points for sublinear and asymptotically linear operators via two coupled parallel sub-super solutions is studied. Under suitable conditions, the exis...In this paper, by the fixed point index theory, the number of fixed points for sublinear and asymptotically linear operators via two coupled parallel sub-super solutions is studied. Under suitable conditions, the existence of at least nine or seven distinct fixed points for sublinear and asymptotically linear operators is proved. Finally, the theoretical results are applied to a nonlinear system of Hammerstein integral equations.展开更多
In this paper, we discuss the existence of sign-changing solution, positive solution and negative solution to two-point boundary value problem of dynamic equations on measure chains using the cone theory and the fixed...In this paper, we discuss the existence of sign-changing solution, positive solution and negative solution to two-point boundary value problem of dynamic equations on measure chains using the cone theory and the fixed-point index method. The results are different from the previous results.展开更多
文摘In this paper we define a fixed point index theory for locally Lip., completely continuous and weakly inward mappings defined on closed convex sets in general Banach spaces where no other artificial conditions are imposed. This makes ns to deal with these kinds of mappings more easily. As obvious applications, some results in [3],[5],[7],[9],[10] are deepened and extended.
文摘In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positive half-line are investigated upper and lower solution techniques combined with fixed point index on cones in priate Banach spaces. The results complement recent ones in the literature. We use appropriate Banach spaces. The results complement recent ones in the literature.
基金Supported in part by the Foundations of Education Ministry, Anhui Province, China (No: KJ2008A028)Education Ministry, Hubei Province, China (No: D20102502)
文摘S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate boundary conditions, under which the fixed point index for i(A, Ω, p) is equal to nonzero, where i(A, Ω, p) is the completely continuous and weakly inward mapping. Correspondingly, we can obtain many new fixed point theorems of the completely continuous and weakly inward mapping, which generalize some famous theorems such as Rothe's theorem, Altman's theorem, Petryshyn's theorem etc. in the case of weakly inward mappings. In addition, our conclusions extend the famous fixed point theorem of cone expansion and compression to the case of weakly inward mappings. Moreover, the main results contain and generalize the corresponding results in the recent work[2].
基金. This work is supported by the WNSFC(60304003, 10371066) the NSF of Shandong Province(Z2003A01, Y02P01) and the doctoral Foundation of Shandong Province(03B5092)
文摘By fixed point index theory and a result obtained by Amann, existence of the solution for a class of nonlinear operator equations x = Ax is discussed. Under suitable conditions, a couple of positive and negative solutions are obtained. Finally, the abstract result is applied to nonlinear Sturm-Liouville boundary value problem, and at least four distinct solutions are obtained.
文摘In this paper, a fractional multi-point boundary value problem is considered. By using the fixed point index theory and Krein-Rutman theorem, some results on existence are obtained.
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
基金Supported by the National Natural Science Foundation of China(No.10571111)the fund of Shandong Education Committee(J07WH08).
文摘This paper discusses both the nonexistence of positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x, y) is superlinear in y at y = 0 and the existence of multiple positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x,y) is superlinear in x at +∞.
基金This research is supported by NSFC (10071042)NSFSP (Z2000A02).
文摘In this paper, the famous Amann three-solution theorem is generalized. Multiplicity question of fixed points for nonlinear operators via two coupled parallel sub-super solutions is studied. Under suitable conditions, the existence of at least six distinct fixed points of nonlinear operators is proved. The theoretical results are then applied to nonlinear system of Hammerstein integral equations.
基金Sponsored by the National Natural Science Foundation of China (Grant No.10271034).
文摘The cone theorem and the fixed point index are used to investigate the positive solution of singular superlinear boundary value problem for a fourth order nonlinear differential equation.
基金the National Natural Science Foundation of China (10671167,10471075)
文摘In this paper, by the fixed point index theory, the number of fixed points for sublinear and asymptotically linear operators via two coupled parallel sub-super solutions is studied. Under suitable conditions, the existence of at least nine or seven distinct fixed points for sublinear and asymptotically linear operators is proved. Finally, the theoretical results are applied to a nonlinear system of Hammerstein integral equations.
基金Supported by the National Natural Science Foundation of China (10971179)Natural Science Foundation of Shandong Province (ZR2010AM035)Research Award Fund for Outstanding Young Scientists of Shandong Province (BS2012SF022, BS2010SF023)
文摘In this paper, we discuss the existence of sign-changing solution, positive solution and negative solution to two-point boundary value problem of dynamic equations on measure chains using the cone theory and the fixed-point index method. The results are different from the previous results.