期刊文献+
共找到998篇文章
< 1 2 50 >
每页显示 20 50 100
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:9
1
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
下载PDF
Controlling Roll Temperature by Fluid-Solid Coupled Heat Transfer 被引量:2
2
作者 Jing-Feng Zou Li-Feng Ma +3 位作者 Guo-Hua Zhang Zhi-Quan Huang Jin-Bao Lin Peng-Tao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期66-79,共14页
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref... Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process. 展开更多
关键词 Magnesium alloy Fluid heating heat transfer model Numerical simulation of fluid?solid coupling
下载PDF
Coupled Transfer of Water and Heat in Red Soil: Experiment and Numerical Modelling 被引量:4
3
作者 HANXIAOFEI LUJUN 《Pedosphere》 SCIE CAS CSCD 2001年第2期123-130,共8页
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment... Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable. 展开更多
关键词 coupled transfer of water and heat numerical modelling red soil
下载PDF
Development of experimental study on coupled heat and moisture transfer in porous building envelope 被引量:2
4
作者 陈国杰 刘向伟 +2 位作者 陈友明 郭兴国 邓永强 《Journal of Central South University》 SCIE EI CAS 2012年第3期669-674,共6页
A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,whi... A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly. 展开更多
关键词 coupled heat and moisture transfer transient moisture content multi-layer porous building envelope
下载PDF
THE NUMERICAL ANALYSIS OF UNSTEADY HEAT TRANSFER OF A PISTON-LINER COUPLED SYSTEM IN AN INTERNAL COMBUSTION ENGINE
5
作者 蒋惠强 《Journal of Southeast University(English Edition)》 EI CAS 1993年第2期69-78,共10页
This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,pisto... This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,piston set,lubricantfilm,liner and coolant in a whole engine cycle,and can predict the temperature fluc-tuation and distribution on piston crown,inner surface of liner,piston ring and thelubricant film.A computer program is developed to calculate the unsteady heat trans-fer process of piston-liner system in a water-cooled diesel engine. 展开更多
关键词 FEM FDM I.C. Engine temperature distributions transients fluctuation/unsteady heat transfer piston-liner coupled system
下载PDF
ANALYSIS OF THE THERMOPHYSICAL PARAMETERS OF MOIST WOOD PARTICLE MATERIAL IN A COUPLED HEAT AND MASS TRANSFER PROCESS OF FREEZING BY USING FINITE ELEMENT METHOD
6
作者 Shang DekuNortheast Forestry University 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1991年第2期69-76,共8页
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met... The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment. 展开更多
关键词 Finite element method Freezing process coupled heat and mass transfer Variable thermophysical parameters
下载PDF
Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane
7
作者 Zhijie Shen Jingchun Min 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期497-506,共10页
Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simu... Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simulate the coupled heat and mass transfer across a membrane,total coupling equations and the expressions for the four characteristic parameters including the heat transfer coefficient,molardriven heat transfer coefficient,thermal-driven mass transfer coefficient,and mass transfer coefficient are derived and provided,with the Onsager’s reciprocal relation being confirmed to verify the rationality of the model.Calculations are conducted to investigate the effects of the membrane property and air state on the coupling transport process.The results show that the four characteristic parameters directly affect the transmembrane heat and mass fluxes:the heat and mass transfer coefficients are both positive,meaning that the temperature difference has a positive contribution to the heat transfer and the humidity ratio difference has a positive contribution to the mass transfer.The molar-driven heat transfer and thermal-driven mass transfer coefficients are both negative,implying that the humidity ratio difference acts to reduce the heat transfer and the temperature difference works to diminish the mass transfer.The mass transfer affects the heat transfer by 1%–2%while the heat transfer influences the mass transfer by7%–14%.The entropy generation caused by the temperature difference-induced heat transfer is much larger than that by the humidity difference-induced mass transfer. 展开更多
关键词 MEMBRANE Non-equilibrium thermodynamics heat transfer Mass transfer coupling effect
下载PDF
Analysis of coupled flow-reaction with heat transfer in heap bioleaching processes
8
作者 吴爱祥 刘金枝 +1 位作者 尹升华 王洪江 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1473-1480,共8页
A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics so... A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration. 展开更多
关键词 heap leaching model of coupled flow-reaction with heat transfer bioleaching numerical simulation
下载PDF
Coupled Conductive-Convective-Radiative Heat Transfer in Hollow Blocks with Two Air Cells in the Vertical Direction Subjected to an Incident Solar Flux
9
作者 Mourad Najjaoui Thami Ait-taleb +2 位作者 Abdelhalim Abdelbaki Zaki Zrikem Hassan Chaib 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1399-1407,共9页
This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep ... This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep in the vertical direction and three identical cavities in the horizontal direction are considered(typically used for building ceilings).Moreover,their outside horizontal surface is subjected to an incident solar flux and outdoor environment temperature while the inside surface is exposed to typical indoor environment conditions.The flows are considered laminar and two-dimensional over the whole range of parameters examined.The conservation equations are solved by means of a finite difference method based on the control volumes approach,relying on the SIMPLE algorithm for what concerns the coupling of pressure and velocity.The effects of the number of cells in the horizontal direction and the thermal conductivity on the heat transfer through the alveolar structure have been investigated.The results show that the number of holes has a significant impact on the value of the overall heat flux through the considered structure. 展开更多
关键词 Numerical simulation heat transfer coupled hollow concrete block control volumes approach
下载PDF
Coupled heat-fluid-solid numerical study on heat extraction potential of hot dry rocks based on discrete fracture network model
10
作者 Daobing Wang Haiyan Zhu +6 位作者 Marembo Micheal Xuanhe Tang Qin Li Xiangyi Yi Dongliang Sun Bo Yu Qiang Liu 《Energy Geoscience》 2023年第4期81-94,共14页
Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normal... Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normally distributed random functions,we develop a corresponding pre-processing subprogram to establish a discrete network model of complex fracture distribution in HDR reservoirs;then construct a heat-fluid-solid finite element model for heat extraction via water injection and compare the numerical solution with the analytical solution of the one-dimensional non-isothermal consolidation problem for verification.The numerical simulation results show that the main factors affecting the heat extraction efficiency of HDR reservoirs include fracture width,fracture density,fracture permeability,and matrix permeability.When a HDR reservoir is injected with water for heat extraction,there is a certain threshold value of these influential parameters,beyond which the outlet temperature drops significantly,resulting in an obvious thermal breakthrough.When injecting water for heat extraction,the values of these parameters should be controlled and kept at a reasonable level,otherwise,the HDR reservoir may enter a thermal breakthrough stage in advance,which is not conducive for long-period heat extraction.Influenced by the random distribution of complex fractures,the leading edge of the cold front may present an irregular distribution.During the process of heat extraction,the stress gradually changes from a compressional state to a tensile state,which induces further damage to the HDR reservoir. 展开更多
关键词 Enhanced geothermal system Seepage and heat transfer Complex fractures heat extraction efficiency Multifield coupling
下载PDF
Stagnation-point flow of couple stress fluid with melting heat transfer 被引量:3
11
作者 T.HAYAT M.MUSTAFA +1 位作者 Z.IQBAL A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第2期167-176,共10页
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel... Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet. 展开更多
关键词 couple stress fluid melting heat transfer stagnation-point flow series solution
下载PDF
Efficient Inverse Analysis for Solving a Coupled Conduction,Convection and Radiation Problem Involving Non⁃gray Participating Media
12
作者 HE Zheng CAO Zhenkun +2 位作者 CHENG Xiang CUI Miao LIU Kun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期621-631,共11页
The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving t... The presence of non-gray radiative properties in a reheating furnace’s medium that absorbs,emits,and involves non-gray creates more complex radiative heat transfer problems.Furthermore,it adds difficulty to solving the coupled conduction,convection,and radiation problem,leading to suboptimal efficiency that fails to meet real-time control demands.To overcome this difficulty,comparable gray radiative properties of non-gray media are proposed and estimated by solving an inverse problem.However,the required iteration numbers by using a least-squares method are too many and resulted in a very low inverse efficiency.It is necessary to present an efficient method for the equivalence.The Levenberg-Marquardt algorithm is utilized to solve the inverse problem of coupled heat transfer,and the gray-equivalent radiative characteristics are successfully recovered.It is our intention that the issue of low inverse efficiency,which has been observed when the least-squares method is employed,will be resolved.To enhance the performance of the Levenberg-Marquardt algorithm,a modification is implemented for determining the damping factor.Detailed investigations are also conducted to evaluate its accuracy,stability of convergence,efficiency,and robustness of the algorithm.Subsequently,a comparison is made between the results achieved using each method. 展开更多
关键词 inverse problem coupled heat transfer problem Levenberg-Marquardt algorithm
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
13
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
A novel electron-phonon coupling thermoelasticity with Burgers electronic heat transfer
14
作者 Hua WU Xinyi LI +1 位作者 Yajun YU Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1927-1940,共14页
The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extrem... The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments,such as micro-scale and ultrafast processes.In this work,the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the secondorder heat flux rate for electrons.Then,a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer.Then,the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step(BTS)model.The thermoelastic analytical solutions are systematically derived in the Laplace domain,and the numerical Laplace inversion method is adopted to obtain the transient responses.The new model is compared with the parabolic two-step(PTS)model and the hyperbolic two-step(HTS)model.The results show that in ultrafast heating,the BTS model has the same wave front jump as the HTS model.The present model has the faster wave speed,and predicts the bigger disturbed regions than the HTS model.More deeply,all two-step models also have the faster wave speeds than one-step models.This work may benefit the theoretical modeling of ultrafast heating of metals. 展开更多
关键词 Burgers heat transfer electron-phonon coupling two-step generalized thermoelasticity
下载PDF
Numerical Simulation of Bubble Formation at a Single Orifice in Gas-fluidized Beds with Smoothed Particle Hydrodynamics and Finite Volume Coupled Method 被引量:2
15
作者 F.Z.Chen H.F.Qiang W.R.Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第1期41-68,共28页
A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynami... A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynamics,whereas gas phase is discretized by finite volume method.Drag force,gas pressure gradient,and volume fraction are used to couple the two methods.The effect of injection velocities,particle sizes,and particle densities on bubble growth is analyzed using the coupled method.The simulation results,obtained for two-dimensional geometries,include the shape and diameter size of a bubble as a function of time;such results are compared with experimental data,previous numerical results,and other approximate model predictions reported in the literature.Moreover,the flow profiles of gas and particle phases and the temperature distribution by the heat transfer model around the forming bubble are also discussed.All results show that the coupled method efficiently describes of the bubble formation in fluidized beds.The proposed method is applicable for solving gas–solid two-phase flow in fluidization. 展开更多
关键词 coupled method smoothed particle HYDRODYNAMICS FINITE volumemethod BUBBLE formation heat transfer FLUIDIZATION
下载PDF
Numerical Simulation of an Airfoil Electrothermal-Deicing-System in the Framework of a Coupled Moving-Boundary Method 被引量:3
16
作者 Miao Xin Guo Zhong Yihua Cao 《Fluid Dynamics & Materials Processing》 EI 2020年第6期1-30,共30页
A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to dropl... A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to droplet impingement and the ice accretion region.The method relies on a Eulerian approach(used to capture droplet dynamics)and an unsteady heat transfer model(specifically conceived for a multilayer electrothermal problem on the basis of the enthalpy theory and a phase-change correction approach).Through application of the continuous boundary condition for temperature and heat flux at the coupled movingboundary,several simulations of ice accretion,melting and shedding,runback water flow and refreezing phenomena during the electrothermal deicing process are conducted.Finally,the results are verified via comparison with experimental data.A rich set of data concerning the dynamic evolution of the distribution of surface temperature,water film height and ice shape is presented and critically discussed. 展开更多
关键词 Electrothermal deicing water film flow unsteady heat transfer ice recognition coupled moving-boundary ice shedding
下载PDF
Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips 被引量:2
17
作者 HUANG Hua-gui ZHANG Jun-peng JI Ce 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1133-1146,共14页
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the... Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip. 展开更多
关键词 unequal diameter twin-roll casting Cu/Al clad strips asymmetric heat transfer thermal-fluid coupled microstructure
下载PDF
Optimization of Dividing Wall Column with Heat Transfer Process Across the Wall for Feed Properties Variation 被引量:2
18
作者 Hu Yuqi Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第2期118-124,共7页
This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of... This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of feed thermal condition (q) and middle component composition of feed (cB) on the heat transfer process, the optimal heat transfer region, and the maximum heat transfer quantity across the wall. The simulation results show that the maximum heat transfer quantity across the wall and the potential for energy saving increase with the increase of q, while with the limitation of temperature difference across the wall, the beneficial heat transfer effect between certain range of stages, which are involved in the optimal heat transfer region, cannot be realized completely for a specific value of q. Besides, compared with q, a changing cB does not change the degree of realizing the beneficial heat transfer effect, but can bring about the variation of liquid split ratio (RL) and vapor split ratio (Rv). Thus, for achieving a maximum energy-saving effect of DWC, different q and cB need to find its own corresponding suitable heat transfer process across the wall. 展开更多
关键词 dividing WALL COLUMN heat transfer process thermal-coupled effect FEED PROPERTIES
下载PDF
MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls
19
作者 M. ASHRAF N. JAMEEL K. ALI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1263-1276,共14页
A study is presented for magnetohydrodynamics (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting micropolar fluid in a channel with stretching walls. The micropolar mode... A study is presented for magnetohydrodynamics (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting micropolar fluid in a channel with stretching walls. The micropolar model introduced by Eringen is used to describe the working fluid. The transformed self similar ordinary differential equations together with the associated boundary conditions are solved numerically by an algorithm based on quasi-linearization and multilevel discretization. The effects of some physical parameters on the flow and heat transfer are discussed and presented through tables and graphs. The present investigations may be beneficial in the flow and thermal control of polymeric processing. 展开更多
关键词 magnetohydrodynamics (MHD) heat transfer stretching wall couple stress quasi-linearization
下载PDF
The fast method and convergence analysis of the fractional magnetohydrodynamic coupled flow and heat transfer model for the generalized second-grade fluid 被引量:1
20
作者 Xiaoqing Chi Hui Zhang Xiaoyun Jiang 《Science China Mathematics》 SCIE CSCD 2024年第4期919-950,共32页
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h... In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail. 展开更多
关键词 fractional MHD coupled flow and heat transfer model generalized second-grade fuid fast method convergence analysis numerical simulation
原文传递
上一页 1 2 50 下一页 到第
使用帮助 返回顶部