A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics...A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.展开更多
In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China...In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.展开更多
The Jiangnan orogenic belt is a key to understanding of the Neoproterozoic tectonic evolution of the South China Block. We investigate the mafic-ultramafic suites of lherzolite, pyroxenite, gabbro, pillow basalt and g...The Jiangnan orogenic belt is a key to understanding of the Neoproterozoic tectonic evolution of the South China Block. We investigate the mafic-ultramafic suites of lherzolite, pyroxenite, gabbro, pillow basalt and gabbroic diorite as well as red jasper interbedded with marine marbles that are mainly exposed as fault-trapped blocks in the Yuanbaoshan and Longsheng domains of the western Jiangnan belt. The postcollisional granite plutons that intruded the ultramafic-mafic rocks are developed well. Zircons in the gabbro yield crystallization ages of 867±10 Ma, 863±8 Ma, 869±9 Ma and 855±5 Ma whereas those from the granites show ages of 823±5 Ma, 831±5 Ma, 824±5 Ma and 833±6 Ma. The Neoproterozoic serpentinited ultramafic samples display minor REE enriched pattern with depletion of Rb, Ba, Nb, Ta and Ti, similar to those of SSZ type ophiolite. The coeval gabbro shows tholeiitic features and is characterized by negative Ba, Nb, Ta, Zr, Hf and Sr anomalies and LREE enriched patterns, with a minor negative Eu anomaly. Some zircon grains from the Longshen gabbro yield Neoarchean-Paleoproterozoic ages(2859–2262 Ma), suggesting its continental arc setting. Geochemical signature of the maficultramafic rocks is consistent with subduction related setting. The pyroxene-bearing diorite exhibits a distinctive arc affinity. The zircons from the gabbro show positive εHf(t) values ranging from 3.9 to 13.8. The granitoids are typical S–type granites with high ACNK values(1.15–1.40) and negative εHf(t) values(–15.1 to –3.2), and are classified as collision–related granites. Combined with the occurrences of mafic-ultramafic rocks, siliceous marble and red jasper mixed with basalt, our new results suggest the presence of a Tonian(863–869 Ma) SSZ ophiolite system and continental arc-type magmatism in the western Jiangnan orogen.展开更多
The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sedime...The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.展开更多
The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data ...The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data to examine the deformation and structure style of the EQFTB, particularly the deformational history of the Dina 2 gas field. Seismic interpretations suggest that Dongqiu 8 is overall a duplex structure developed beneath a passive roof thrust, which generated from a tipline in the Miocene Jidike Formation, and the sole thrust was initiated from the same Jidike Formation evaporite zone that extends westward beneath the Kuqatawu anticline. Dongqiu 5 is a pop-up structure at the western part of the EQFTB, also developed beneath the Jidike Formation evaporite. Very gentle basement dip and steep dipping topographic slope in the EQFTB suggest that the Jidike Formation salt provides effective decoupling. The strong deformation in the EQFTB appears to have developed further south, in an area where evaporite may be lacking. Since the Pliocene, the EQFTB has moved farther south over the evaporite and reached the Yaken area. Restoring a balanced cross-section suggests that the minimum shortening across the EQFTB is more than 7800 m. Assuming that this shortening occurred during the 5.3 Ma timespan, the shortening rate is approximately 1.47 mm/year.展开更多
South China is characterized by large-area multistage magmatism.It boasts a huge number of polymetallic deposits such as W-Sn,Cu-Au,rare earth deposits,thus serving as a"giant granary"of metal mineral resour...South China is characterized by large-area multistage magmatism.It boasts a huge number of polymetallic deposits such as W-Sn,Cu-Au,rare earth deposits,thus serving as a"giant granary"of metal mineral resources in China(Lüet al.,2021).展开更多
It has been five years since the Belt and Road Initiative (BRI) was first introduced. Though there has been a growing body of literature on regional cooperation between covered countries, Japan and South Korea have be...It has been five years since the Belt and Road Initiative (BRI) was first introduced. Though there has been a growing body of literature on regional cooperation between covered countries, Japan and South Korea have been barely discussed. This paper starts with the consensus-based mechanism of a China-Japan-South Korea Free Trade Area (FTA) to probe the approach of its alignment with the BRI in terms of the sequence of “master plans,”“viability of cooperation,” and “embedding of rules.” This inquiry found that the three countries have a shared interest in cooperation in Central Asia to which China prefers a pragmatic approach, while Japan and South Korea an approach combining idealism with pragmatism. Given the huge potential of cooperation between the trio, it is suggested that a “Central Asia chapter” be incorporated in the negotiation framework of this trilateral FTA, and that the design feature three aspects;fundamental principles, specific rules, and an executive body with a view to functionally contributing to regional trade integration in Asia. This approach may also be applied to the alignment of other Asian areas with the BRI.展开更多
Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China....Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.展开更多
The pre-Cenozoic northern South China Sea(SCS)Basin basement was supposed to exist as a complex of heterogeneous segments,divided by dozens of N-S faulting.Unfortunately,only the Hainan Island and the northeastern SCS...The pre-Cenozoic northern South China Sea(SCS)Basin basement was supposed to exist as a complex of heterogeneous segments,divided by dozens of N-S faulting.Unfortunately,only the Hainan Island and the northeastern SCS region were modestly dated while the extensive basement remains roughly postulated by limited geophysical data.This study presents a systematic analysis including U-Pb geochronology,elemental geochemistry and petrographic identification on granite and meta-clastic borehole samples from several key areas.Constrained from gravity-magnetic joint inversion,this interpretation will be of great significance revealing the tectono-magmatic evolution along the southeastern margin of the Eurasian Plate.Beneath the thick Cenozoic sediments,the northern SCS is composed of a uniform Mesozoic basement while the Precambrian rocks are only constricted along the Red River Fault Zone.Further eastern part of the northern SCS below the Cenozoic succession was widely intruded by granites with Jurassic-to-early Cretaceous ages.Further western part,on the other hand,is represented by meta-sedimentary rocks with relatively sporadic granite complexes.To be noted,the western areas derived higher-degree and wider metamorphic zones,which is in contrast with the lowerdegree and narrower metamorphic belt developed in the eastern region.Drastic collisions between the Indochina Block and South China continent took place since at least late Triassic,resulting in large-scale suturing and deformation zones.At the westernmost part of the northern SCS,the intracontinental amalgamation with closure of the Meso-Tethys has caused fairly stronger and broader metamorphism.One metamorphic biotite granite is located on the suturing belt and yields a Precambrian U-Pb age.It likely represents the relict from the ancient Gondwana supercontinent or its fringes.Arc-continental collision between the Paleo-Pacific and the southeast China Block,on the other hand,results in a relatively narrow NE–SW trending metamorphic belt during the late Mesozoic.Within the overall geological setting,the Cenozoic SCS oceanic basin was subsequently generated from a series of rifting and faulting processes along the collisional-accretionary continental margin.展开更多
The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×...The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×10^(6)t Cu and 28000 t Mo and other useful components like Ga,making it one of the largest W deposits in the world.This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit,involving the role of the ore-related granites,the tectonic background for its formation,and the metallogenesis model.The systematic geological survey suggests multi-types of alteration are developed in the deposit,mainly including greisenization,potassic-alteration,sericitization,chloritization,and silicification.Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II.Therein,the W resource has reached a supergiant scale,and the accompanied Cu,Mo,Au,Bi,Ga,and some other useful components are also of economic significance.The main ore-minerals consist of scheelite,wolframite and chalcopyrite.Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies,and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites.The main orebody occurs at the external contact zone,and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization.Of them,the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper.Combining previous geochronological and isotopic data,we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry.Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area.Thus,it is a favorable wall rock type for W mineralization.The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal,and the ore-forming fluid was initially derived from the Yanshanian magmas.展开更多
The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distributio...The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distribution and gravity change in different regions. It may be resulted from active faults and seismogenic process, and may be due to microdynamic activity of regional strain energy, which might be accumulated or released in different stages, and there exists transformation process of stress.展开更多
Since China proposed the Belt and Road Initiative (BRI) in late 2013, the impacts of the 21st century Maritime Silk Road (MSR) construction on the South China Sea (SCS) issue become a focal point of both academi...Since China proposed the Belt and Road Initiative (BRI) in late 2013, the impacts of the 21st century Maritime Silk Road (MSR) construction on the South China Sea (SCS) issue become a focal point of both academic research and public concern. There are plenty of divergent opinions on whether the MSR will mean an opportunity for settling the SCS issue, or it will face the challenge of intensified maritime conflicts in this region. This paper first of all analyzes the significance of the BRI in the general picture of China's foreign policy. To ensure neighborhood diplomacy be in line with the BRI, China adjusts its SCS policy through rebuilding and consolidating political mutual trust with countries which have been involved into conflicts with China on the SCS issue; meanwhile, China promotes pragmatic cooperation under MSR framework to cultivate positive atmosphere and sense of community with a shared destiny. Both MSR construction and the addressing of the SCS issue are long-term issues, while the MSR provides an innovative approach to surpass existing disputes and focus on regional development cooperation. Hence, the MSR could be an opportunity to accelerate the resolving of maritime disputes.展开更多
The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,un...The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,understanding of the EOF2 mode is still limited.In this study,the authors identify that the EOF2 mode physically depicts the latitudinal variation of the climatological summer-mean rainy belt along the Yangtze River valley(YRRB),based on a 160-station rainfall dataset in China for the period 1951-2011.The latitudinal variation of the YRRB is mostly attributed to two different rainfall patterns:one reflects the seesaw(SS) rainfall changes between the YH and SC(SS pattern),and the other features rainfall anomalies concentrated in SC only(SC pattern).Corresponding to a southward shift of the YRRB,the SS pattern,with above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly centered over the SC-East China Sea region,with a northerly anomaly blowing from the YH to SC;while the SC pattern,with above-normal rainfall in SC,is related to an anticyclonic anomaly over the western North Pacific(WNP),corresponding to an enhanced southwest monsoon over SC.The cyclonic anomaly,related to the SS pattern,is induced by a near-barotropic eastward propagating wave train along the Asian upper-tropospheric westerly jet,originating from the mid-high latitudes of the North Atlantic.The anticyclonic anomaly,for the SC pattern,is related to suppressed rainfall in the WNP.展开更多
The giant Dahutang tungsten(W)deposit has a total reserve of more than 1.31 Mt WO3.Veinlet-disseminated scheelite and vein type wolframite mineralization are developed in this deposit,which are related to Late Mesozoi...The giant Dahutang tungsten(W)deposit has a total reserve of more than 1.31 Mt WO3.Veinlet-disseminated scheelite and vein type wolframite mineralization are developed in this deposit,which are related to Late Mesozoic biotite granite.Four major types of alterations,which include albitization,potassic-alteration,and greisenization,and overprinted silicification developed in contact zone.The mass balance calculate of the four alteration types were used to further understanding of the mineralization process.The fresh porphyritic biotite granite has high Nb,Ta,and W,but low Ca and Sr while the Jiuling granodiorite has high Ca and Sr,but low Nb,Ta,and W concentrations.The altered porphyritic biotite granite indicated that the Nb,Ta,and W were leached out from the fresh porphyritic biotite granite,especially by sodic alteration.The low Ca and Sr contents of the altered Neoproterozoic Jiuling granodiorite indicate that Ca and Sr had been leached out from the fresh granodiorite by the fluid from Mesozoic porphyritic biotite granites.The metal W of the Dahutang deposit was mainly derived from the fluid exsolution from the melt and alteration of W-bearing granites.This study of alteration presents a new hydrothermal circulation model to understand tungsten mineralization in the Dahutang deposit.展开更多
Caledonian gold deposits are widely distributed in South China. They are developed in both South China Caledonian fold belt and adjacent Proterozoic Jiangnan uplift. The host rocks are Proterozoic metamorphosed microc...Caledonian gold deposits are widely distributed in South China. They are developed in both South China Caledonian fold belt and adjacent Proterozoic Jiangnan uplift. The host rocks are Proterozoic metamorphosed microclastic rocks in the Jiangnan uplift and Proterozoic and Cambrian strata, as well as Chengjiang and Caledonian igneous bodies in the South China fold belt. The distinct differences between the Caledonian and the most developed Yenshanian gold deposits in South China are reflected in age and host-rock type, relations to Yenshanian magmatic activities, element association, mineral assemblage and gold deposit type. The studies have proven that the Caledonian epoch is a principal metallogenic period of gold deposits in South China. This conclusion is of very important enlightening significance in exploration of Caledonian gold deposits in South China as well as in other Caledonian fold belts and adjacent uplifts in China.展开更多
The Mesozoic tectonic framework of the eastern South China is mainly controlled by subduction,turning toward,and rollback of the Pacific Plate.Recent studies of receiver function imaging and ambient noise tomography h...The Mesozoic tectonic framework of the eastern South China is mainly controlled by subduction,turning toward,and rollback of the Pacific Plate.Recent studies of receiver function imaging and ambient noise tomography have revealed the“Yshaped”thinnest crustal belt in the eastern South China under the overall extension of the lithosphere.However,the deep dynamic environment and formation mechanisms of the thin crustal belt remain debatable.Here we obtained high-resolution images of the crustal thickness and Poisson’s ratio in the eastern South China Block applying the recently proposed H-κ-c receiver function method,using data recorded by 305 dense portable broadband stations and 219 permanent stations surrounding.Additionally,we discussed the deep dynamic formation mechanism of the“Y-shaped”thinnest crustal belt coupled with two common conversion point stacked images at key locations.Results show that the average crustal thickness of the study area is 33 km(thin crust)and the average Poisson’s ratio is 0.24(low ratio).The overall crustal thinning toward the continental margin is likely because eastern South China was in a back-arc extension environment,which was induced by the rollback of the subducted plate in the Early Cretaceous.The crustal thickness of the“Y-shaped”thinnest crustal belt is<30 km,which is 3-5 km thinner than that outside the zone.The eastern branch is distributed along the trajectory of Nanchang-Ji’an-Ganzhou-Shaoguan-Guangzhou,and the western branch is around the Jianghan-Xiangzhong Basin,both of which intersect in Nanling.The eastern branch of the thin crustal zone indicates the potential location of the Pacific subduction slab breakoff,and the formation mechanism may be related to the interaction of deep-shallow processes,including the upwelling of mantle heat flow through the slab window and transtensional pre-existing faults.We developed a dynamic model that combines subduction-breakoff-rollback processes of the Paleo-Pacific Plate and accompanying deep fluid upwelling to explain the regional extension of the South China lithosphere,the formation mechanism of the thinnest crustal belt,and the distribution of granitic plutons.展开更多
A close relationship between tin metallogenic and crustal structure in South China is demonstrated, which is based on a careful study on crustal structure and a detailed comparison between typical deposits in differen...A close relationship between tin metallogenic and crustal structure in South China is demonstrated, which is based on a careful study on crustal structure and a detailed comparison between typical deposits in different tectonic units. Types, locations, emplacement of ore bodies and ore genesis of tin deposits are relative to crustal structure. Tin mineralization zones of South China can be divided into three tin metallogenic units including the west part corresponding to Youjiang fold belt, middle part corresponding to fold belt of Hunan Guangdong Jiangxi provinces and the east part corresponding to Southeast China coastal volcanic faulting depression. From the above, it is concluded that crustal compositions and structures are the main facts of Sn concentration in South China.展开更多
基金National Natural Science Foundation of China(41930972,52239006,41975001)。
文摘A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.
基金supported by China Geological Survey(CGS) and IGMA 5000 (Grant No. 12120111200131)the ministry of Science and Technology (MST) (Grant No.,2011FY120100)
文摘In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.
文摘The Jiangnan orogenic belt is a key to understanding of the Neoproterozoic tectonic evolution of the South China Block. We investigate the mafic-ultramafic suites of lherzolite, pyroxenite, gabbro, pillow basalt and gabbroic diorite as well as red jasper interbedded with marine marbles that are mainly exposed as fault-trapped blocks in the Yuanbaoshan and Longsheng domains of the western Jiangnan belt. The postcollisional granite plutons that intruded the ultramafic-mafic rocks are developed well. Zircons in the gabbro yield crystallization ages of 867±10 Ma, 863±8 Ma, 869±9 Ma and 855±5 Ma whereas those from the granites show ages of 823±5 Ma, 831±5 Ma, 824±5 Ma and 833±6 Ma. The Neoproterozoic serpentinited ultramafic samples display minor REE enriched pattern with depletion of Rb, Ba, Nb, Ta and Ti, similar to those of SSZ type ophiolite. The coeval gabbro shows tholeiitic features and is characterized by negative Ba, Nb, Ta, Zr, Hf and Sr anomalies and LREE enriched patterns, with a minor negative Eu anomaly. Some zircon grains from the Longshen gabbro yield Neoarchean-Paleoproterozoic ages(2859–2262 Ma), suggesting its continental arc setting. Geochemical signature of the maficultramafic rocks is consistent with subduction related setting. The pyroxene-bearing diorite exhibits a distinctive arc affinity. The zircons from the gabbro show positive εHf(t) values ranging from 3.9 to 13.8. The granitoids are typical S–type granites with high ACNK values(1.15–1.40) and negative εHf(t) values(–15.1 to –3.2), and are classified as collision–related granites. Combined with the occurrences of mafic-ultramafic rocks, siliceous marble and red jasper mixed with basalt, our new results suggest the presence of a Tonian(863–869 Ma) SSZ ophiolite system and continental arc-type magmatism in the western Jiangnan orogen.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Fundamental Research Funds for the Central Universities(No.16lgjc22)
文摘The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.
基金supported by the National Major Fundamental Research and Development Project of China(no.:19990433).
文摘The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data to examine the deformation and structure style of the EQFTB, particularly the deformational history of the Dina 2 gas field. Seismic interpretations suggest that Dongqiu 8 is overall a duplex structure developed beneath a passive roof thrust, which generated from a tipline in the Miocene Jidike Formation, and the sole thrust was initiated from the same Jidike Formation evaporite zone that extends westward beneath the Kuqatawu anticline. Dongqiu 5 is a pop-up structure at the western part of the EQFTB, also developed beneath the Jidike Formation evaporite. Very gentle basement dip and steep dipping topographic slope in the EQFTB suggest that the Jidike Formation salt provides effective decoupling. The strong deformation in the EQFTB appears to have developed further south, in an area where evaporite may be lacking. Since the Pliocene, the EQFTB has moved farther south over the evaporite and reached the Yaken area. Restoring a balanced cross-section suggests that the minimum shortening across the EQFTB is more than 7800 m. Assuming that this shortening occurred during the 5.3 Ma timespan, the shortening rate is approximately 1.47 mm/year.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.92062108,41630320 and 41574133)the China Geological Survey project(Grant Nos.DD20190012 and DD20160082)the National Key R&D Program of China(Grant No.2016YFC0600201)
文摘South China is characterized by large-area multistage magmatism.It boasts a huge number of polymetallic deposits such as W-Sn,Cu-Au,rare earth deposits,thus serving as a"giant granary"of metal mineral resources in China(Lüet al.,2021).
基金funded by the Fundamental Research Funds for the Central Universities
文摘It has been five years since the Belt and Road Initiative (BRI) was first introduced. Though there has been a growing body of literature on regional cooperation between covered countries, Japan and South Korea have been barely discussed. This paper starts with the consensus-based mechanism of a China-Japan-South Korea Free Trade Area (FTA) to probe the approach of its alignment with the BRI in terms of the sequence of “master plans,”“viability of cooperation,” and “embedding of rules.” This inquiry found that the three countries have a shared interest in cooperation in Central Asia to which China prefers a pragmatic approach, while Japan and South Korea an approach combining idealism with pragmatism. Given the huge potential of cooperation between the trio, it is suggested that a “Central Asia chapter” be incorporated in the negotiation framework of this trilateral FTA, and that the design feature three aspects;fundamental principles, specific rules, and an executive body with a view to functionally contributing to regional trade integration in Asia. This approach may also be applied to the alignment of other Asian areas with the BRI.
基金Th is study was carried out during 2001-2003 and financially supposed by the National Natural Science Foundation of China(No.40074020)
文摘Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and 41874076the National Science and Technology Major Project under contract Nos 2016ZX05026004-002 and 2017ZX05026005-005the Fund of China Association for Science and Technology under contract No.2018CASRQNJL18
文摘The pre-Cenozoic northern South China Sea(SCS)Basin basement was supposed to exist as a complex of heterogeneous segments,divided by dozens of N-S faulting.Unfortunately,only the Hainan Island and the northeastern SCS region were modestly dated while the extensive basement remains roughly postulated by limited geophysical data.This study presents a systematic analysis including U-Pb geochronology,elemental geochemistry and petrographic identification on granite and meta-clastic borehole samples from several key areas.Constrained from gravity-magnetic joint inversion,this interpretation will be of great significance revealing the tectono-magmatic evolution along the southeastern margin of the Eurasian Plate.Beneath the thick Cenozoic sediments,the northern SCS is composed of a uniform Mesozoic basement while the Precambrian rocks are only constricted along the Red River Fault Zone.Further eastern part of the northern SCS below the Cenozoic succession was widely intruded by granites with Jurassic-to-early Cretaceous ages.Further western part,on the other hand,is represented by meta-sedimentary rocks with relatively sporadic granite complexes.To be noted,the western areas derived higher-degree and wider metamorphic zones,which is in contrast with the lowerdegree and narrower metamorphic belt developed in the eastern region.Drastic collisions between the Indochina Block and South China continent took place since at least late Triassic,resulting in large-scale suturing and deformation zones.At the westernmost part of the northern SCS,the intracontinental amalgamation with closure of the Meso-Tethys has caused fairly stronger and broader metamorphism.One metamorphic biotite granite is located on the suturing belt and yields a Precambrian U-Pb age.It likely represents the relict from the ancient Gondwana supercontinent or its fringes.Arc-continental collision between the Paleo-Pacific and the southeast China Block,on the other hand,results in a relatively narrow NE–SW trending metamorphic belt during the late Mesozoic.Within the overall geological setting,the Cenozoic SCS oceanic basin was subsequently generated from a series of rifting and faulting processes along the collisional-accretionary continental margin.
基金supported financially by the National Natural Science Foundation of China(No.41772069)projects of the China Geological Survey(1212011220737,121201004000150015,DD20190570).
文摘The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China.The deposit has a resource of 0.74×10^(6)t of WO_(3)accompanied by 0.4×10^(6)t Cu and 28000 t Mo and other useful components like Ga,making it one of the largest W deposits in the world.This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit,involving the role of the ore-related granites,the tectonic background for its formation,and the metallogenesis model.The systematic geological survey suggests multi-types of alteration are developed in the deposit,mainly including greisenization,potassic-alteration,sericitization,chloritization,and silicification.Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II.Therein,the W resource has reached a supergiant scale,and the accompanied Cu,Mo,Au,Bi,Ga,and some other useful components are also of economic significance.The main ore-minerals consist of scheelite,wolframite and chalcopyrite.Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies,and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites.The main orebody occurs at the external contact zone,and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization.Of them,the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper.Combining previous geochronological and isotopic data,we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry.Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area.Thus,it is a favorable wall rock type for W mineralization.The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal,and the ore-forming fluid was initially derived from the Yanshanian magmas.
基金the State Key Basic Research Project(G1998040703)and China Seismological Bureau under the "Ninth Five-year Plan"(95-03-01),China.
文摘The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distribution and gravity change in different regions. It may be resulted from active faults and seismogenic process, and may be due to microdynamic activity of regional strain energy, which might be accumulated or released in different stages, and there exists transformation process of stress.
文摘Since China proposed the Belt and Road Initiative (BRI) in late 2013, the impacts of the 21st century Maritime Silk Road (MSR) construction on the South China Sea (SCS) issue become a focal point of both academic research and public concern. There are plenty of divergent opinions on whether the MSR will mean an opportunity for settling the SCS issue, or it will face the challenge of intensified maritime conflicts in this region. This paper first of all analyzes the significance of the BRI in the general picture of China's foreign policy. To ensure neighborhood diplomacy be in line with the BRI, China adjusts its SCS policy through rebuilding and consolidating political mutual trust with countries which have been involved into conflicts with China on the SCS issue; meanwhile, China promotes pragmatic cooperation under MSR framework to cultivate positive atmosphere and sense of community with a shared destiny. Both MSR construction and the addressing of the SCS issue are long-term issues, while the MSR provides an innovative approach to surpass existing disputes and focus on regional development cooperation. Hence, the MSR could be an opportunity to accelerate the resolving of maritime disputes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41375086 and 41320104007)
文摘The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,understanding of the EOF2 mode is still limited.In this study,the authors identify that the EOF2 mode physically depicts the latitudinal variation of the climatological summer-mean rainy belt along the Yangtze River valley(YRRB),based on a 160-station rainfall dataset in China for the period 1951-2011.The latitudinal variation of the YRRB is mostly attributed to two different rainfall patterns:one reflects the seesaw(SS) rainfall changes between the YH and SC(SS pattern),and the other features rainfall anomalies concentrated in SC only(SC pattern).Corresponding to a southward shift of the YRRB,the SS pattern,with above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly centered over the SC-East China Sea region,with a northerly anomaly blowing from the YH to SC;while the SC pattern,with above-normal rainfall in SC,is related to an anticyclonic anomaly over the western North Pacific(WNP),corresponding to an enhanced southwest monsoon over SC.The cyclonic anomaly,related to the SS pattern,is induced by a near-barotropic eastward propagating wave train along the Asian upper-tropospheric westerly jet,originating from the mid-high latitudes of the North Atlantic.The anticyclonic anomaly,for the SC pattern,is related to suppressed rainfall in the WNP.
基金This research is jointly funded by the Project of China Geological Survey(DD20190186 and 12120114034501)National Natural Science Foundation of China(42062006 and 41962007).
文摘The giant Dahutang tungsten(W)deposit has a total reserve of more than 1.31 Mt WO3.Veinlet-disseminated scheelite and vein type wolframite mineralization are developed in this deposit,which are related to Late Mesozoic biotite granite.Four major types of alterations,which include albitization,potassic-alteration,and greisenization,and overprinted silicification developed in contact zone.The mass balance calculate of the four alteration types were used to further understanding of the mineralization process.The fresh porphyritic biotite granite has high Nb,Ta,and W,but low Ca and Sr while the Jiuling granodiorite has high Ca and Sr,but low Nb,Ta,and W concentrations.The altered porphyritic biotite granite indicated that the Nb,Ta,and W were leached out from the fresh porphyritic biotite granite,especially by sodic alteration.The low Ca and Sr contents of the altered Neoproterozoic Jiuling granodiorite indicate that Ca and Sr had been leached out from the fresh granodiorite by the fluid from Mesozoic porphyritic biotite granites.The metal W of the Dahutang deposit was mainly derived from the fluid exsolution from the melt and alteration of W-bearing granites.This study of alteration presents a new hydrothermal circulation model to understand tungsten mineralization in the Dahutang deposit.
文摘Caledonian gold deposits are widely distributed in South China. They are developed in both South China Caledonian fold belt and adjacent Proterozoic Jiangnan uplift. The host rocks are Proterozoic metamorphosed microclastic rocks in the Jiangnan uplift and Proterozoic and Cambrian strata, as well as Chengjiang and Caledonian igneous bodies in the South China fold belt. The distinct differences between the Caledonian and the most developed Yenshanian gold deposits in South China are reflected in age and host-rock type, relations to Yenshanian magmatic activities, element association, mineral assemblage and gold deposit type. The studies have proven that the Caledonian epoch is a principal metallogenic period of gold deposits in South China. This conclusion is of very important enlightening significance in exploration of Caledonian gold deposits in South China as well as in other Caledonian fold belts and adjacent uplifts in China.
基金Instrument Developing Project of the Chinese Academy of Sciences(YZ201136)National Natural Science Foundation of China(41106086,41474065,41376059,41376061,91428205,41576036,41076028,41476167,and 41606080)Chinese Academy of Sciences Scholarship,the Strat
基金geological survey project of China Geological Survey(Grant Nos.12120114067701,DD20179357,and DD20160082)the National Natural Science Foundation of China(Grant No.41574092)supported by the National Natural Science Foundation of China(Grant Nos.91962110,41774113,42174069,41874055,and 42104099).
文摘The Mesozoic tectonic framework of the eastern South China is mainly controlled by subduction,turning toward,and rollback of the Pacific Plate.Recent studies of receiver function imaging and ambient noise tomography have revealed the“Yshaped”thinnest crustal belt in the eastern South China under the overall extension of the lithosphere.However,the deep dynamic environment and formation mechanisms of the thin crustal belt remain debatable.Here we obtained high-resolution images of the crustal thickness and Poisson’s ratio in the eastern South China Block applying the recently proposed H-κ-c receiver function method,using data recorded by 305 dense portable broadband stations and 219 permanent stations surrounding.Additionally,we discussed the deep dynamic formation mechanism of the“Y-shaped”thinnest crustal belt coupled with two common conversion point stacked images at key locations.Results show that the average crustal thickness of the study area is 33 km(thin crust)and the average Poisson’s ratio is 0.24(low ratio).The overall crustal thinning toward the continental margin is likely because eastern South China was in a back-arc extension environment,which was induced by the rollback of the subducted plate in the Early Cretaceous.The crustal thickness of the“Y-shaped”thinnest crustal belt is<30 km,which is 3-5 km thinner than that outside the zone.The eastern branch is distributed along the trajectory of Nanchang-Ji’an-Ganzhou-Shaoguan-Guangzhou,and the western branch is around the Jianghan-Xiangzhong Basin,both of which intersect in Nanling.The eastern branch of the thin crustal zone indicates the potential location of the Pacific subduction slab breakoff,and the formation mechanism may be related to the interaction of deep-shallow processes,including the upwelling of mantle heat flow through the slab window and transtensional pre-existing faults.We developed a dynamic model that combines subduction-breakoff-rollback processes of the Paleo-Pacific Plate and accompanying deep fluid upwelling to explain the regional extension of the South China lithosphere,the formation mechanism of the thinnest crustal belt,and the distribution of granitic plutons.
文摘A close relationship between tin metallogenic and crustal structure in South China is demonstrated, which is based on a careful study on crustal structure and a detailed comparison between typical deposits in different tectonic units. Types, locations, emplacement of ore bodies and ore genesis of tin deposits are relative to crustal structure. Tin mineralization zones of South China can be divided into three tin metallogenic units including the west part corresponding to Youjiang fold belt, middle part corresponding to fold belt of Hunan Guangdong Jiangxi provinces and the east part corresponding to Southeast China coastal volcanic faulting depression. From the above, it is concluded that crustal compositions and structures are the main facts of Sn concentration in South China.