Let p be a prime, m ≥ 2, and (m,p(p - 1)) = 1. In this paper, we will calculate explicitly the Gauss sum G(X) = ∑x∈F*qX(x)ζ^Tp^(x) in the case of [(Z/mZ)* : (p)] = 4, and -1 (不属于) (p), wher...Let p be a prime, m ≥ 2, and (m,p(p - 1)) = 1. In this paper, we will calculate explicitly the Gauss sum G(X) = ∑x∈F*qX(x)ζ^Tp^(x) in the case of [(Z/mZ)* : (p)] = 4, and -1 (不属于) (p), where q P^f, f =φ(m)/4, X is a multiplicative character of Fq with order m, and T is the trace map for Fq/Fp. Under the assumptions [(Z/mZ)* : (p)] = 4 and 1(不属于) (p), the decomposition field of p in the cyclotomic field Q(ζm) is an imaginary quartic (abelian) field. And G(X) is an integer in K. We deal with the case where K is cyclic in this oaDer and leave the non-cvclic case to the next paper.展开更多
基金the National Fundamental Research (973) Project of China (G1999175101) the Grant of National Education Department of China (20010003001)
文摘Let p be a prime, m ≥ 2, and (m,p(p - 1)) = 1. In this paper, we will calculate explicitly the Gauss sum G(X) = ∑x∈F*qX(x)ζ^Tp^(x) in the case of [(Z/mZ)* : (p)] = 4, and -1 (不属于) (p), where q P^f, f =φ(m)/4, X is a multiplicative character of Fq with order m, and T is the trace map for Fq/Fp. Under the assumptions [(Z/mZ)* : (p)] = 4 and 1(不属于) (p), the decomposition field of p in the cyclotomic field Q(ζm) is an imaginary quartic (abelian) field. And G(X) is an integer in K. We deal with the case where K is cyclic in this oaDer and leave the non-cvclic case to the next paper.