Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is com...Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surf...This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.展开更多
The construction of major marine infrastructure projects and the exploration and development of deep-sea mineral resources require fine imaging of seabed strata and structures.The highresolution marine seismic explora...The construction of major marine infrastructure projects and the exploration and development of deep-sea mineral resources require fine imaging of seabed strata and structures.The highresolution marine seismic exploration based on a high broadband sparker source is an important approach to reveal seabed stratum and reservoir structure,and identify geohazard.To optimize the performance of sparker seismic source,we investigated the electro-acoustic characteristics of spark discharge under conditions of different charging voltages and electrode numbers.Results show that the sound source level increased with the increase of the charging voltage,whereas the main frequency decreased when the charging voltage increases.In addition,it was found that the charging capacitance had more obvious influence on the main frequency than the sound source level did.Although the load energy decreased with increasing electrode number,the sound source level still increased but the main frequency decreased.Meanwhile,the primary to bubble(P/B)ratio increased with the increase of the electrode number.To gain a deeper insight into the electro-acoustic characteristics,we investigate the relationship between sound source level and power peak,from which a good correlation was observed.A more practical statistical analysis on the rise rate of current was processed,and a perfect logarithmic function was derived.Furthermore,we found that the main frequency was most possibly subjected to the electrical energy,especially the charging energy per electrode.The results indicate that the charging energy per electrode less than 10 J could increase the main frequency to above 300 Hz.At last,the main frequency could be reduced to 20 Hz when the charging energy of a single-electrode discharge was enhanced to over 4 kJ.This study shall be helpful in developing a sparker seismic source and improving the performance for marine engineering exploration and geohazard assessment.展开更多
A permanent tidal station was installed at the Chinese Zhongshan Station in Feb. 2010. Harmonic constants of 170 tidal constituents were obtained from harmonic analysis of the first year' s data. The results of the e...A permanent tidal station was installed at the Chinese Zhongshan Station in Feb. 2010. Harmonic constants of 170 tidal constituents were obtained from harmonic analysis of the first year' s data. The results of the eight main constituents showed good agreement with those of two tidal models. Tidal characteristics, such as tide type, diurnal inequality, tidal range, and water levels were also analyzed.展开更多
文摘Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金supported by the National High Technology Research and Development Program (‘863’ Program) of China under contract No. 2012AA091701the Fundamental Research Fund for the Central University of China under the contract No. 2012212020211
文摘This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.
基金Supported by the National Natural Science Foundation of China(No.42276195)the Natural Science Foundation of Zhejiang Province(No.LQ22D060006)the Science Foundation of Zhejiang Sci-Tech University(No.21022092-Y)。
文摘The construction of major marine infrastructure projects and the exploration and development of deep-sea mineral resources require fine imaging of seabed strata and structures.The highresolution marine seismic exploration based on a high broadband sparker source is an important approach to reveal seabed stratum and reservoir structure,and identify geohazard.To optimize the performance of sparker seismic source,we investigated the electro-acoustic characteristics of spark discharge under conditions of different charging voltages and electrode numbers.Results show that the sound source level increased with the increase of the charging voltage,whereas the main frequency decreased when the charging voltage increases.In addition,it was found that the charging capacitance had more obvious influence on the main frequency than the sound source level did.Although the load energy decreased with increasing electrode number,the sound source level still increased but the main frequency decreased.Meanwhile,the primary to bubble(P/B)ratio increased with the increase of the electrode number.To gain a deeper insight into the electro-acoustic characteristics,we investigate the relationship between sound source level and power peak,from which a good correlation was observed.A more practical statistical analysis on the rise rate of current was processed,and a perfect logarithmic function was derived.Furthermore,we found that the main frequency was most possibly subjected to the electrical energy,especially the charging energy per electrode.The results indicate that the charging energy per electrode less than 10 J could increase the main frequency to above 300 Hz.At last,the main frequency could be reduced to 20 Hz when the charging energy of a single-electrode discharge was enhanced to over 4 kJ.This study shall be helpful in developing a sparker seismic source and improving the performance for marine engineering exploration and geohazard assessment.
基金Supported by National Major Scientific Research Projects(2012CB957701)Natural Natural Science Foundation(41176172,41176173,41076126,41106163)Polar Environment Comprehensive Expedition the Resources Potential Evaluation Project(CHINARE2012-01-03,CHINARE2012-02-02,CHINARE2012-03-03)
文摘A permanent tidal station was installed at the Chinese Zhongshan Station in Feb. 2010. Harmonic constants of 170 tidal constituents were obtained from harmonic analysis of the first year' s data. The results of the eight main constituents showed good agreement with those of two tidal models. Tidal characteristics, such as tide type, diurnal inequality, tidal range, and water levels were also analyzed.