Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof over...Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.展开更多
New method for handling roof of the base successive mining is proposed, which is induction caving in the roof. The key is that it is made certain to the station of the space-time in the induction caving roof, as the s...New method for handling roof of the base successive mining is proposed, which is induction caving in the roof. The key is that it is made certain to the station of the space-time in the induction caving roof, as the stress is released with the mining process. And applying the catastrophe theory, the influencing factors of induction caving roof are studied in the emptied areas, such as the mechanical property of the surrounding rock, the area of the gob,the scope and dimension of tensile stress. The results show that the key factor is the area of the gob to the method of the induction caving roof. Then according to the geology and the ore characteristic, the three dimension FEM mechanical model is built in Tongkeng Mine, the laws of the tensile stress are analyzed to the space and the time in the roof with the mining, then it is rational design to the mine step and time of the handing the roof.展开更多
According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based...According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based on the above research, one effective method by using field monitoring was brought forward to determine the controlling factor. Then some related key technologies were provided, such as keeping the integrality of the top-coal, raising the horizontal resistance of supports and decreasing the real end-face distance etc.. At last one application of this method was presented, and it was proved to be an effective method.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
基金Supported by National Natural Science Fundation of China(50674045)
文摘Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.
基金Project(50490274) supported by the National Nature Science Foundation of China
文摘New method for handling roof of the base successive mining is proposed, which is induction caving in the roof. The key is that it is made certain to the station of the space-time in the induction caving roof, as the stress is released with the mining process. And applying the catastrophe theory, the influencing factors of induction caving roof are studied in the emptied areas, such as the mechanical property of the surrounding rock, the area of the gob,the scope and dimension of tensile stress. The results show that the key factor is the area of the gob to the method of the induction caving roof. Then according to the geology and the ore characteristic, the three dimension FEM mechanical model is built in Tongkeng Mine, the laws of the tensile stress are analyzed to the space and the time in the roof with the mining, then it is rational design to the mine step and time of the handing the roof.
文摘According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based on the above research, one effective method by using field monitoring was brought forward to determine the controlling factor. Then some related key technologies were provided, such as keeping the integrality of the top-coal, raising the horizontal resistance of supports and decreasing the real end-face distance etc.. At last one application of this method was presented, and it was proved to be an effective method.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.