Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,...Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.展开更多
At present,the process of digital image information fusion has the problems of low data cleaning unaccuracy and more repeated data omission,resulting in the unideal information fusion.In this regard,a visualized multi...At present,the process of digital image information fusion has the problems of low data cleaning unaccuracy and more repeated data omission,resulting in the unideal information fusion.In this regard,a visualized multicomponent information fusion method for big data based on radar map is proposed in this paper.The data model of perceptual digital image is constructed by using the linear regression analysis method.The ID tag of the collected image data as Transactin Identification(TID)is compared.If the TID of two data is the same,the repeated data detection is carried out.After the test,the data set is processed many times in accordance with the method process to improve the precision of data cleaning and reduce the omission.Based on the radar images,hierarchical visualization of processed multi-level information fusion is realized.The experiments show that the method can clean the redundant data accurately and achieve the efficient fusion of multi-level information of big data in the digital image.展开更多
Aerial scene recognition(ASR)has attracted great attention due to its increasingly essential applications.Most of the ASR methods adopt the multi‐scale architecture because both global and local features play great r...Aerial scene recognition(ASR)has attracted great attention due to its increasingly essential applications.Most of the ASR methods adopt the multi‐scale architecture because both global and local features play great roles in ASR.However,the existing multi‐scale methods neglect the effective interactions among different scales and various spatial locations when fusing global and local features,leading to a limited ability to deal with challenges of large‐scale variation and complex background in aerial scene images.In addition,existing methods may suffer from poor generalisations due to millions of to‐belearnt parameters and inconsistent predictions between global and local features.To tackle these problems,this study proposes a scale‐wise interaction fusion and knowledge distillation(SIF‐KD)network for learning robust and discriminative features with scaleinvariance and background‐independent information.The main highlights of this study include two aspects.On the one hand,a global‐local features collaborative learning scheme is devised for extracting scale‐invariance features so as to tackle the large‐scale variation problem in aerial scene images.Specifically,a plug‐and‐play multi‐scale context attention fusion module is proposed for collaboratively fusing the context information between global and local features.On the other hand,a scale‐wise knowledge distillation scheme is proposed to produce more consistent predictions by distilling the predictive distribution between different scales during training.Comprehensive experimental results show the proposed SIF‐KD network achieves the best overall accuracy with 99.68%,98.74%and 95.47%on the UCM,AID and NWPU‐RESISC45 datasets,respectively,compared with state of the arts.展开更多
An objective performance measure for image fusion considering region information is proposed. The measure not only reflects how much the pixel level information that fused image takes from the source image, but also c...An objective performance measure for image fusion considering region information is proposed. The measure not only reflects how much the pixel level information that fused image takes from the source image, but also considers the region information between source images and fused image. The measure is meaningful and explicit. Several simulations were conducted to show that it accords well with the subjective evaluations.展开更多
In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of th...In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.展开更多
This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolu...This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolution multi-spectral images for navigationinformation infrastructure. The mathematical model of image fusion is derived according to theprinciple of remote sensing image formation. It shows that the pixel values of a high-resolutionmulti-spectral images are determined by the pixel values of the approximation of a high-resolutionpanchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixelvalae computation the M-band wavelet theory and the a trous algorithm are then used. In order toevaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 mpanchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusionapproach gives promising fusion results and it can be used to produce the high-resolution remotesensing images required for navigation information infrastructures.展开更多
The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR image...The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR images is extremely difficult.We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields.Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration,which allows multi-modal image registration and accelerates execution time.An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination,which yields better combination accuracy.The test results show that this method is effective,especially for the larger subfields with an overlap of more than 80%,which is competitive with the current methods and is of potential clinical significance.展开更多
Aiming at concrete tasks of information fusion in computer pan vision (CPV) system, information fusion methods are studied thoroughly. Some research progresses are presented. Recognizing of vision testing object is re...Aiming at concrete tasks of information fusion in computer pan vision (CPV) system, information fusion methods are studied thoroughly. Some research progresses are presented. Recognizing of vision testing object is realized by fusing vision information and non vision auxiliary information, which contain recognition of material defects, intelligent robot’s autonomous recognition for parts and computer to defect image understanding and recognition automatically.展开更多
Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion....Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion. Firstly, original image is divided into small blocks and each block is sampled independently using the same measurement operator, to obtain the smaller encoded sparser coefficients and stored measurements matrix and its vectors.? Secondly, original image is reconstructed using the block measurements fusion and recovery transform. Finally, several numerical experiments demonstrate that our method has a much lower data storage and calculation cost as well as high quality of reconstruction when compared with other existing schemes. We believe it is of great practical potentials in the network communication as well as pattern recognition domain.展开更多
To eliminate unnecessary background information,such as soft tissues in original CT images and the adverse impact of the similarity of adjacent spines on lumbar image segmentation and surgical path planning,a two‐sta...To eliminate unnecessary background information,such as soft tissues in original CT images and the adverse impact of the similarity of adjacent spines on lumbar image segmentation and surgical path planning,a two‐stage approach for localising lumbar segments is proposed.First,based on the multi‐scale feature fusion technology,a non‐linear regression method is used to achieve accurate localisation of the overall spatial region of the lumbar spine,effectively eliminating useless background information,such as soft tissues.In the second stage,we directly realised the precise positioning of each segment in the lumbar spine space region based on the non‐linear regression method,thus effectively eliminating the interference caused by the adjacent spine.The 3D Intersection over Union(3D_IOU)is used as the main evaluation indicator for the positioning accuracy.On an open dataset,3D_IOU values of 0.8339�0.0990 and 0.8559�0.0332 in the first and second stages,respectively is achieved.In addition,the average time required for the proposed method in the two stages is 0.3274 and 0.2105 s respectively.Therefore,the proposed method performs very well in terms of both pre-cision and speed and can effectively improve the accuracy of lumbar image segmentation and the effect of surgical path planning.展开更多
针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature...针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。展开更多
文摘Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.
基金2018 National Grade Innovation and Entrepreneurship Training Program for College Students,China(No.201811562005)Research Project of Gansu University,China(No.2016A-105)Innovation and Entrepreneurship Education Project of Gansu Province in 2019,China(No.2019024)。
文摘At present,the process of digital image information fusion has the problems of low data cleaning unaccuracy and more repeated data omission,resulting in the unideal information fusion.In this regard,a visualized multicomponent information fusion method for big data based on radar map is proposed in this paper.The data model of perceptual digital image is constructed by using the linear regression analysis method.The ID tag of the collected image data as Transactin Identification(TID)is compared.If the TID of two data is the same,the repeated data detection is carried out.After the test,the data set is processed many times in accordance with the method process to improve the precision of data cleaning and reduce the omission.Based on the radar images,hierarchical visualization of processed multi-level information fusion is realized.The experiments show that the method can clean the redundant data accurately and achieve the efficient fusion of multi-level information of big data in the digital image.
基金supported in part by the National Natural Science Foundation of China under Grant 62201452,2271296 and 62201453in part by the Natural Science Basic Research Programme of Shaanxi under Grant 2022JQ‐592+1 种基金in part by the Special Construction Fund for Key Disciplines of Shaanxi Provincial Higher Education,in part by the Natural Science Basic Research Program of Shaanxi under Grant 2021JC‐47in part by Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant 22JK0568.
文摘Aerial scene recognition(ASR)has attracted great attention due to its increasingly essential applications.Most of the ASR methods adopt the multi‐scale architecture because both global and local features play great roles in ASR.However,the existing multi‐scale methods neglect the effective interactions among different scales and various spatial locations when fusing global and local features,leading to a limited ability to deal with challenges of large‐scale variation and complex background in aerial scene images.In addition,existing methods may suffer from poor generalisations due to millions of to‐belearnt parameters and inconsistent predictions between global and local features.To tackle these problems,this study proposes a scale‐wise interaction fusion and knowledge distillation(SIF‐KD)network for learning robust and discriminative features with scaleinvariance and background‐independent information.The main highlights of this study include two aspects.On the one hand,a global‐local features collaborative learning scheme is devised for extracting scale‐invariance features so as to tackle the large‐scale variation problem in aerial scene images.Specifically,a plug‐and‐play multi‐scale context attention fusion module is proposed for collaboratively fusing the context information between global and local features.On the other hand,a scale‐wise knowledge distillation scheme is proposed to produce more consistent predictions by distilling the predictive distribution between different scales during training.Comprehensive experimental results show the proposed SIF‐KD network achieves the best overall accuracy with 99.68%,98.74%and 95.47%on the UCM,AID and NWPU‐RESISC45 datasets,respectively,compared with state of the arts.
基金Project supported by the Shanghai Leading Academic Disipline Project (No. P1301)the Scientific Research Foundation of Shanghai University of Electric Power (No. K-2005-22)+1 种基金the Common Scien-tific Research Project of Shanghai Academic Committee (No. 06LZ015)the Excellent Young Teacher Foundation of Shanghai (No. Z-2006-11), China
文摘An objective performance measure for image fusion considering region information is proposed. The measure not only reflects how much the pixel level information that fused image takes from the source image, but also considers the region information between source images and fused image. The measure is meaningful and explicit. Several simulations were conducted to show that it accords well with the subjective evaluations.
文摘In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.
文摘This paper introduces the image fusion approach of multi-resolutionanalysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral imagesfrom high-resolution panchromatic image and low-resolution multi-spectral images for navigationinformation infrastructure. The mathematical model of image fusion is derived according to theprinciple of remote sensing image formation. It shows that the pixel values of a high-resolutionmulti-spectral images are determined by the pixel values of the approximation of a high-resolutionpanchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixelvalae computation the M-band wavelet theory and the a trous algorithm are then used. In order toevaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 mpanchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusionapproach gives promising fusion results and it can be used to produce the high-resolution remotesensing images required for navigation information infrastructures.
基金Supported by the National Natural Science Foundation of China(Nos.60971133,61271112)
文摘The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR images is extremely difficult.We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields.Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration,which allows multi-modal image registration and accelerates execution time.An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination,which yields better combination accuracy.The test results show that this method is effective,especially for the larger subfields with an overlap of more than 80%,which is competitive with the current methods and is of potential clinical significance.
文摘Aiming at concrete tasks of information fusion in computer pan vision (CPV) system, information fusion methods are studied thoroughly. Some research progresses are presented. Recognizing of vision testing object is realized by fusing vision information and non vision auxiliary information, which contain recognition of material defects, intelligent robot’s autonomous recognition for parts and computer to defect image understanding and recognition automatically.
文摘Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion. Firstly, original image is divided into small blocks and each block is sampled independently using the same measurement operator, to obtain the smaller encoded sparser coefficients and stored measurements matrix and its vectors.? Secondly, original image is reconstructed using the block measurements fusion and recovery transform. Finally, several numerical experiments demonstrate that our method has a much lower data storage and calculation cost as well as high quality of reconstruction when compared with other existing schemes. We believe it is of great practical potentials in the network communication as well as pattern recognition domain.
基金Original Innovation Joint Fund:L202010 and the National Key Research and Development Program of China:2018YFB1307604National Key Research and Development Program of China,Grant/Award Numbers:2018YFB1307604。
文摘To eliminate unnecessary background information,such as soft tissues in original CT images and the adverse impact of the similarity of adjacent spines on lumbar image segmentation and surgical path planning,a two‐stage approach for localising lumbar segments is proposed.First,based on the multi‐scale feature fusion technology,a non‐linear regression method is used to achieve accurate localisation of the overall spatial region of the lumbar spine,effectively eliminating useless background information,such as soft tissues.In the second stage,we directly realised the precise positioning of each segment in the lumbar spine space region based on the non‐linear regression method,thus effectively eliminating the interference caused by the adjacent spine.The 3D Intersection over Union(3D_IOU)is used as the main evaluation indicator for the positioning accuracy.On an open dataset,3D_IOU values of 0.8339�0.0990 and 0.8559�0.0332 in the first and second stages,respectively is achieved.In addition,the average time required for the proposed method in the two stages is 0.3274 and 0.2105 s respectively.Therefore,the proposed method performs very well in terms of both pre-cision and speed and can effectively improve the accuracy of lumbar image segmentation and the effect of surgical path planning.
文摘针对由于血管类间具有强相似性造成的动静脉错误分类问题,提出了一种新的融合上下文信息的多尺度视网膜动静脉分类网络(multi-scale retinal artery and vein classification network,MCFNet),该网络使用多尺度特征(multi-scale feature,MSF)提取模块及高效的全局上下文信息融合(efficient global contextual information aggregation,EGCA)模块结合U型分割网络进行动静脉分类,抑制了倾向于背景的特征并增强了血管的边缘、交点和末端特征,解决了段内动静脉错误分类问题。此外,在U型网络的解码器部分加入3层深度监督,使浅层信息得到充分训练,避免梯度消失,优化训练过程。在2个公开的眼底图像数据集(DRIVE-AV,LES-AV)上,与3种现有网络进行方法对比,该模型的F1评分分别提高了2.86、1.92、0.81个百分点,灵敏度分别提高了4.27、2.43、1.21个百分点,结果表明所提出的模型能够很好地解决动静脉分类错误的问题。