Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are...Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.展开更多
This paper provides further contributions to the theory of linear sufficiency in the general Gauss-Markov model E(y)=Xβ,Var (y)=V.The notion of linear sufficiency introduced by Baksalary and Kala(1981) and Drygas(198...This paper provides further contributions to the theory of linear sufficiency in the general Gauss-Markov model E(y)=Xβ,Var (y)=V.The notion of linear sufficiency introduced by Baksalary and Kala(1981) and Drygas(1983) is extended for any specific estimable function c′β.Some general results with respect to the extended concept are obtained.An essential result concerning the former notion is a direct consequence of this paper.展开更多
General linear model (GLM) is the most popular method for functional magnetic resource imaging (fMRI) data analysis . However, its theory is imperfect. The key of this model is how to constitute the design-matrix to m...General linear model (GLM) is the most popular method for functional magnetic resource imaging (fMRI) data analysis . However, its theory is imperfect. The key of this model is how to constitute the design-matrix to model the interesting effects better and separate noises better. For the purpose of detecting brain function activation , according to the principle of GLM,a new convolution model is presented by a new dynamic function convolving with design-matrix,which combining with t-test can be used to detect brain active signal. The fMRI imaging result of visual stimulus experiment indicates that brain activities mainly concentrate among v1and v2 areas of visual cortex, and also verified the validity of this technique.展开更多
We study the quasi likelihood equation in Generalized Linear Models(GLM) with adaptive design ∑(i=1)^n xi(yi-h(x'iβ))=0, where yi is a q=vector, and xi is a p×q random matrix. Under some assumptions, i...We study the quasi likelihood equation in Generalized Linear Models(GLM) with adaptive design ∑(i=1)^n xi(yi-h(x'iβ))=0, where yi is a q=vector, and xi is a p×q random matrix. Under some assumptions, it is shown that the Quasi- Likelihood equation for the GLM has a solution which is asymptotic normal.展开更多
This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). Th...This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.展开更多
This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncerta...This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear met...In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.展开更多
We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alte...We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.展开更多
In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovest...In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.展开更多
A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations...A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.展开更多
Abstract Comparison is made between the MINQUE and simple estimate of the error variance in the normal linear model under the mean square errors criterion, where the model matrix need not have full rank and the disper...Abstract Comparison is made between the MINQUE and simple estimate of the error variance in the normal linear model under the mean square errors criterion, where the model matrix need not have full rank and the dispersion matrix can be singular. Our results show that any one of both estimates cannot be always superior to the other. Some sufficient criteria for any one of them to be better than the other are established. Some interesting relations between these two estimates are also given.展开更多
By using IAP 9L AGCM, two sets of long-term climatological integration have been performed with the two different interpolation procedures for generating the daily surface boundary conditions. One interpolation proced...By using IAP 9L AGCM, two sets of long-term climatological integration have been performed with the two different interpolation procedures for generating the daily surface boundary conditions. One interpolation procedure is the so-called “traditional” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the observed monthly mean values, however the observed monthly means cannot be preserved after interpolation. The other one is the “new” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the “artificial” monthly mean values which are based on, but are different from the observed ones, after interpolating with this new scheme, not only the observed monthly mean values are preserved, the time series of the new generated daily values is also more consistent with the observation. Comparison of the model results shows that the differences of the globally or zonally averaged fields between these two integrations are quite small, and this is due to the compensating effect between the different regions. However, the differences of the two patterns (the global or regional geographical distributions), are quite significant, for example, the magnitude of the difference in the JJA mean rainfall between these two integrations can exceed 2 mm/ day over Asian monsoon regions, and the difference in DJF mean surface air temperature can also exceed 2?C over this region. The fact that the model climatology depends quite strongly on the method of prescribing the daily surface boundary conditions suggests that in order to validate the climate model or to predict the short-term climate anomalies, either the “new? interpolation scheme or the high frequency surface boundary conditions (e.g., daily or weekly data instead of the monthly data) should be introduced. Meanwhile, as for the coupled model, the daily coupling scheme between the different component climate models ( e.g., atmospheric and oceanic general circulation models) is preferred in order to partly eliminate the “climate drift” problem which may appear during the course of direct coupling.展开更多
Studies on TGS (toe-grip strength) are currently proliferating as a result of the development of the dynamometer. The purpose of the present study was to investigate the reliability and validity of TGS as a physical...Studies on TGS (toe-grip strength) are currently proliferating as a result of the development of the dynamometer. The purpose of the present study was to investigate the reliability and validity of TGS as a physical function in preschool aged children. The participants were 153 preschoolers. Each participant was measured in terms of his or her TGS and completed a MAT (motor ability test). The reliability of the measurements was investigated via Pearson's r and Cronbach's a through a test-retest method, as well as a Bland-Altman plot. The validity of the TGS value was investigated by measuring the correlation between TGS and each component of the MAT, the principal component analysis, and a two-way layout ANOVA with general linear model (gender and age). All reliability coefficients were more than 0.70. Though all components of the MAT relating to TGS were found to be significant (P 〈 0.05), these correlations were weak. However, TGS was found to be a physical function that relating to the lower limbs and develops with aging. Therefore, TGS was found to be a highly reliable measure of physical function performance in preschoolers.展开更多
Analysis of functional MRI (fMRI) blood oxygenation level dependent (BOLD) data is typically carried out in the time domain where the data has a high temporal correlation. These analyses usually employ parametric mode...Analysis of functional MRI (fMRI) blood oxygenation level dependent (BOLD) data is typically carried out in the time domain where the data has a high temporal correlation. These analyses usually employ parametric models of the hemodynamic response function (HRF) where either pre-whitening of the data is attempted or autoregressive (AR) models are employed to model the noise. Statistical analysis then proceeds via regression of the convolution of the HRF with the input stimuli. This approach has limitations when considering that the time series collected are embedded in a brain image in which the AR model order may vary and pre-whitening techniques may be insufficient for handling faster sampling times. However fMRI data can be analyzed in the Fourier domain where the assumptions made as to the structure of the noise can be less restrictive and hypothesis tests are straightforward for single subject analysis, especially useful in a clinical setting. This allows for experiments that can have both fast temporal sampling and event-related designs where stimuli can be closely spaced in time. Equally important, statistical analysis in the Fourier domain focuses on hypothesis tests based on nonparametric estimates of the hemodynamic transfer function (HRF in the frequency domain). This is especially important for experimental designs involving multiple states (drug or stimulus induced) that may alter the form of the response function. In this context a univariate general linear model in the Fourier domain has been applied to analyze BOLD data sampled at a rate of 400 ms from an experiment that used a two-way ANOVA design for the deterministic stimulus inputs with inter-stimulus time intervals chosen from Poisson distributions of equal intensity.展开更多
文摘Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.
基金the Natural Science Foundation of Guangdong Province(0 1 0 4 86 )
文摘This paper provides further contributions to the theory of linear sufficiency in the general Gauss-Markov model E(y)=Xβ,Var (y)=V.The notion of linear sufficiency introduced by Baksalary and Kala(1981) and Drygas(1983) is extended for any specific estimable function c′β.Some general results with respect to the extended concept are obtained.An essential result concerning the former notion is a direct consequence of this paper.
基金Supported by National Natural Science Foundation of China (No.90208003, 30200059), the 973 Project (No. 2003CB716106), Doctor training Fund of MOE, P.R.C., and Fok Ying Tong Education Foundation (No.91041)
文摘General linear model (GLM) is the most popular method for functional magnetic resource imaging (fMRI) data analysis . However, its theory is imperfect. The key of this model is how to constitute the design-matrix to model the interesting effects better and separate noises better. For the purpose of detecting brain function activation , according to the principle of GLM,a new convolution model is presented by a new dynamic function convolving with design-matrix,which combining with t-test can be used to detect brain active signal. The fMRI imaging result of visual stimulus experiment indicates that brain activities mainly concentrate among v1and v2 areas of visual cortex, and also verified the validity of this technique.
文摘We study the quasi likelihood equation in Generalized Linear Models(GLM) with adaptive design ∑(i=1)^n xi(yi-h(x'iβ))=0, where yi is a q=vector, and xi is a p×q random matrix. Under some assumptions, it is shown that the Quasi- Likelihood equation for the GLM has a solution which is asymptotic normal.
文摘This paper considers the problem of delay-dependent robust optimal H<sub>∞</sub> control for a class of uncertain two-dimensional (2-D) discrete state delay systems described by the general model (GM). The parameter uncertainties are assumed to be norm-bounded. A linear matrix inequality (LMI)-based sufficient condition for the existence of delay-dependent g-suboptimal state feedback robust H<sub>∞</sub> controllers which guarantees not only the asymptotic stability of the closed-loop system, but also the H<sub>∞</sub> noise attenuation g over all admissible parameter uncertainties is established. Furthermore, a convex optimization problem is formulated to design a delay-dependent state feedback robust optimal H<sub>∞</sub> controller which minimizes the H<sub>∞</sub> noise attenuation g of the closed-loop system. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.
文摘This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.
文摘In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.
文摘We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.
基金Supported by China Mathematics Tian Yuan Youth Foundation (10226024) and China Postdoctoral Science Foundation.
文摘In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.
文摘A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.
基金Partially supported by the National Natural Science Foundation of China (No.10271010)the Natural Science Foundation of Beijing and a Project of Science and Technology of Beijing Education Committee.
文摘Abstract Comparison is made between the MINQUE and simple estimate of the error variance in the normal linear model under the mean square errors criterion, where the model matrix need not have full rank and the dispersion matrix can be singular. Our results show that any one of both estimates cannot be always superior to the other. Some sufficient criteria for any one of them to be better than the other are established. Some interesting relations between these two estimates are also given.
文摘By using IAP 9L AGCM, two sets of long-term climatological integration have been performed with the two different interpolation procedures for generating the daily surface boundary conditions. One interpolation procedure is the so-called “traditional” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the observed monthly mean values, however the observed monthly means cannot be preserved after interpolation. The other one is the “new” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the “artificial” monthly mean values which are based on, but are different from the observed ones, after interpolating with this new scheme, not only the observed monthly mean values are preserved, the time series of the new generated daily values is also more consistent with the observation. Comparison of the model results shows that the differences of the globally or zonally averaged fields between these two integrations are quite small, and this is due to the compensating effect between the different regions. However, the differences of the two patterns (the global or regional geographical distributions), are quite significant, for example, the magnitude of the difference in the JJA mean rainfall between these two integrations can exceed 2 mm/ day over Asian monsoon regions, and the difference in DJF mean surface air temperature can also exceed 2?C over this region. The fact that the model climatology depends quite strongly on the method of prescribing the daily surface boundary conditions suggests that in order to validate the climate model or to predict the short-term climate anomalies, either the “new? interpolation scheme or the high frequency surface boundary conditions (e.g., daily or weekly data instead of the monthly data) should be introduced. Meanwhile, as for the coupled model, the daily coupling scheme between the different component climate models ( e.g., atmospheric and oceanic general circulation models) is preferred in order to partly eliminate the “climate drift” problem which may appear during the course of direct coupling.
文摘Studies on TGS (toe-grip strength) are currently proliferating as a result of the development of the dynamometer. The purpose of the present study was to investigate the reliability and validity of TGS as a physical function in preschool aged children. The participants were 153 preschoolers. Each participant was measured in terms of his or her TGS and completed a MAT (motor ability test). The reliability of the measurements was investigated via Pearson's r and Cronbach's a through a test-retest method, as well as a Bland-Altman plot. The validity of the TGS value was investigated by measuring the correlation between TGS and each component of the MAT, the principal component analysis, and a two-way layout ANOVA with general linear model (gender and age). All reliability coefficients were more than 0.70. Though all components of the MAT relating to TGS were found to be significant (P 〈 0.05), these correlations were weak. However, TGS was found to be a physical function that relating to the lower limbs and develops with aging. Therefore, TGS was found to be a highly reliable measure of physical function performance in preschoolers.
文摘Analysis of functional MRI (fMRI) blood oxygenation level dependent (BOLD) data is typically carried out in the time domain where the data has a high temporal correlation. These analyses usually employ parametric models of the hemodynamic response function (HRF) where either pre-whitening of the data is attempted or autoregressive (AR) models are employed to model the noise. Statistical analysis then proceeds via regression of the convolution of the HRF with the input stimuli. This approach has limitations when considering that the time series collected are embedded in a brain image in which the AR model order may vary and pre-whitening techniques may be insufficient for handling faster sampling times. However fMRI data can be analyzed in the Fourier domain where the assumptions made as to the structure of the noise can be less restrictive and hypothesis tests are straightforward for single subject analysis, especially useful in a clinical setting. This allows for experiments that can have both fast temporal sampling and event-related designs where stimuli can be closely spaced in time. Equally important, statistical analysis in the Fourier domain focuses on hypothesis tests based on nonparametric estimates of the hemodynamic transfer function (HRF in the frequency domain). This is especially important for experimental designs involving multiple states (drug or stimulus induced) that may alter the form of the response function. In this context a univariate general linear model in the Fourier domain has been applied to analyze BOLD data sampled at a rate of 400 ms from an experiment that used a two-way ANOVA design for the deterministic stimulus inputs with inter-stimulus time intervals chosen from Poisson distributions of equal intensity.