The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access cont...The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices.展开更多
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct facto...The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.展开更多
Objective: The association hypertension and diabetes is important. The two pathologies may influence each other. The aim was to study the correlation between glycemic control and blood pressure control and to determin...Objective: The association hypertension and diabetes is important. The two pathologies may influence each other. The aim was to study the correlation between glycemic control and blood pressure control and to determine the factors associated with blood pressure control. Methodology: This was a descriptive cross-sectional study with an analytical focus over 7 months. Patients were recruited as outpatients and all underwent ambulatory blood pressure measure, glycated hemoglobin and creatinine measurements, and assessment of compliance with treatment. Results: During this period 116 patients were collected. The predominance was female 69%. The mean age of the patients was 62 ± 7 years with a peak between 60 and 70 years. The average age of hypertension was 12 years and that of diabetes 6 1/2 years. The most frequently associated cardiovascular risk factor was a sedentary lifestyle (71.5%) after age. 57.8% of patients were not controlled at the office, with a predominance of systolic hypertension (58.2%). 61.6% of patients were controlled by ambulatory blood pressure measure, a rate of 47.8% of white coat hypertension. Glycemic control was observed in 42.2% of cases and 87% of patients had good renal function (glomerular filter rate ≥ 60 ml/mn). Therapeutic compliance was good in 53.4% of cases and dual therapy was the most used therapeutic modality 44.8% (52 patients) followed by triple therapy. The factors associated with poor blood pressure control were glycemic imbalance, non-compliance and monotherapy. Dual therapy had a protective effect. Conclusion: The association of hypertension and type 2 diabetes is frequent. The risk of occurrence increases with age. Ambulatory blood pressure measure is the best method to assess blood pressure control. Optimization of blood pressure control should also include optimization of glycemic control.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been propose...To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.展开更多
Introduction: Hypertension is a real public health issue and its control is very difficult. We aim to determine the frequency of uncontrolled hypertension in hypertensive patients followed up as an outpatient at the c...Introduction: Hypertension is a real public health issue and its control is very difficult. We aim to determine the frequency of uncontrolled hypertension in hypertensive patients followed up as an outpatient at the campus university hospital of Lome (Togo) and to search for the associated factors. Methodology: The study was cross-sectional, descriptive and analytical, carried out from February (2022) to August 2022 in 260 hypertensive patients aged 22 years old, followed up (on an) as an outpatient for at least 3 months at the Lome University Hospital campus. A univariate then multivariate analysis were conducted in order to highlight the most common factors significantly linked to uncontrolled. Results: The mean age of hypertensives was 56.4 ± 12.7 years, the sex ratio (M/F) was 0.59. Prevalence of uncontrolled blood pressure was 42%. Associated Factors to poor blood pressure control in our study were age > 60 years (OR = 1.6 CI [1.17 - 2.50]), low socio-economic level (OR = 2.2 CI [1.96 - 4.33]), high cardiovascular risk level (OR = 3.1 CI [2.18 - 4.52]), non-adherence to regular blood pressure monitoring (OR = 3.3 CI [2.21 - 5.55]), low compliance to treatment (OR = 4.1 CI [2.33 - 6.76]) and a chronic renal failure (OR = 2.1 CI [1.21 - 3.10]). Conclusion: Nearly half of the hypertensives in our study had poorly controlled blood pressure by antihypertensive treatment medication. The factors of this poor control were age > 60 years, low socio-economic level, high or very high level of cardiovascular risk, low compliance to treatment, and renal failure.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation...How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.展开更多
The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it...The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health;therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.展开更多
When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</su...When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We prove that all these works are already explicitly using the self-adjoint Einstein operator, which cannot be parametrized and the comparison needs no comment. As a byproduct, they are all based on a confusion between the so-called div operator D<sub>2</sub> induced from the Bianchi operator and the Cauchy operator, adjoint of the Killing operator D which is parametrizing the Riemann operator D<sub>1</sub> for an arbitrary n. This purely mathematical result deeply questions the origin and existence of gravitational waves, both with the mathematical foundations of general relativity. As a matter of fact, this new framework provides a totally open domain of applications for computer algebra as the quoted test can be studied by means of Pommaret bases and related recent packages.展开更多
Objective: To explore the practice and application of infection prevention and control strategies in risk departments during the COVID-19 epidemic, and to formulate the infection prevention and control measures to pro...Objective: To explore the practice and application of infection prevention and control strategies in risk departments during the COVID-19 epidemic, and to formulate the infection prevention and control measures to provide advice and guidance in risk departments. Methods: According to the latest plan of diagnosis and treatment, prevention and control issued by the National Health Commission, expert advice and consensus, combined with the actual situation in our hospital, a series of infection prevention and control measures of COVID-19 in risk department was formulated. Results: During the epidemic period, the prevention and control measures of nine risk departments including emergency operation, anesthesiology, endoscopy center, blood purification center, otolaryngology, stomatology, medical imaging department, medical cosmetology department and pulmonary function room were established from six aspects, including pre-examination and screening, medical technology control, personnel management, personal protection, environmental disinfection, medical waste disposal, etc. Conclusion: During the epidemic period, the infection prevention and control strategy of risk departments is one of the key links to control the spread of the epidemic, and risk departments must pay attention to and strictly implement various infection prevention and control measures.展开更多
As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and g...As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.展开更多
Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends thro...Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends through its“inertial”constant.Due to its unique mechanical properties,TMDI has received widespread attention and application in the past twenty years.As different configurations are required in different practical situations,TMDI is still active in the research on vibration control and energy harvesting in structures.This paper provides a comprehensive review of the research status of TMDI.This work first examines the generation and important vibration control characteristics of TMDI.Then,the energy harvesting performance of electromagnetic tuned mass damper inerter(EM-TMDI)is discussed.This work emphasizes the formation of a passive dynamic vibration absorber by coupling traditional TMD with inertial devices.This paper also summarizes the design and implementation of optimal vibration control and energy harvesting for TMDI.Furthermore,this paper details the applications of TMDI in the fields of bridges and building engineering.Finally,this paper summarizes the necessity of research on tuned mass-damper-inertia,the challenges faced currently,and future research directions,such as control of parameters in electromagnetic energy harvesting TMDI systems and low-cost TMDI.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra...Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.展开更多
Millet (Pennisetum glaucum (L.) R. Br.) is the Sahelian crop par excellence due to its adaptation to the particular production conditions in this region. Unfortunately, in recent years this crop has been threatened by...Millet (Pennisetum glaucum (L.) R. Br.) is the Sahelian crop par excellence due to its adaptation to the particular production conditions in this region. Unfortunately, in recent years this crop has been threatened by very strong parasitic pressure and drought during the production period. The objective of this study is to analyze the main constraints of millet production and the solutions known to producers. A survey was carried out in November 2022 with a sample of 298 producers in five municipalities in the Tahoua region. The main constraints are drought and pressure from crop pests (locust, millet ear miner, floricultural insects) according to 57.9% of respondents. The millet ear miner is the most formidable pest according to 55% of respondents. Thus, the average yield obtained in a year of good production without the leafminer is 194 kg/ha and that obtained in a year of millet ear leafminer is around 27 kg to 43 kg/ha depending on the municipality. The yield obtained this last campaign after the attack of this leafminer varies from 64 to 77 kg/ha depending on the municipalities compared to a potential yield of over 1000 kg/ha. More than half of producers (58.1%) are unaware of the existence of biological control compared to only 12.5% who are aware of this alternative method. Work to popularize this technology is necessary in the five municipalities and the entire region in general.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be...As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.展开更多
Geothermal is a clean energy source that is freely available in the subsurface. The exploitation of this vital resource needs intensive exploration in order to identify and quantify its occurrence. The three parameter...Geothermal is a clean energy source that is freely available in the subsurface. The exploitation of this vital resource needs intensive exploration in order to identify and quantify its occurrence. The three parameters considered when assessing the viability of a geothermal system include;heat source, fractures and fluids. Geological structures are important in transportation of fluids to and from the heat source aiding in recharge of the geothermal system and enhancing productivity. Remote sensing method was applied in mapping the structures at Barrier Volcanic Complex (BVC) by using hill shading technique which utilized four illumination angles of the sun (azimuth) i.e. 45°, 90°, 150°, and 315°, constant elevation of 45° and exaggeration of 10. The data used was Shuttle Radar Topographic Mission (SRTM) Satellite Imagery. ArcGIS Software was used for lineaments delineation and density mapping, PCI Geomatica was used to generate major faults, while Georose and Rockworks 17 were used to generate the rose diagrams. Geological structural analysis was done by delineating lineaments, determining the density distribution of lineaments and finally determining the structural trends of lineaments. The generated major faults in the area and the location of the occurrence of surface manifestations were compared with the generated lineaments. A total of 260 lineaments were generated whereby at 45° there was a total of 60 lineaments, at 90° 95 lineaments, at 150° 61 lineaments, and at 315° 44 lineaments. The results of structural analysis in the area as shown by the rose diagrams indicate an NNE-SSW and N-S trending of structures. In conclusion, the study area is highly fractured as indicated by the presence of numerous lineaments. These lineaments provide good recharge to the geothermal system and enhance the geothermal reservoir in the area.展开更多
文摘The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices.
基金supported by the National Natural Science Foundation of China,Nos.82130037(to CH),81971122(to CH),82171323(to WL)the Natural Science Foundation of Jiangsu Province of China,No.BK20201113(to WL)。
文摘The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
文摘Objective: The association hypertension and diabetes is important. The two pathologies may influence each other. The aim was to study the correlation between glycemic control and blood pressure control and to determine the factors associated with blood pressure control. Methodology: This was a descriptive cross-sectional study with an analytical focus over 7 months. Patients were recruited as outpatients and all underwent ambulatory blood pressure measure, glycated hemoglobin and creatinine measurements, and assessment of compliance with treatment. Results: During this period 116 patients were collected. The predominance was female 69%. The mean age of the patients was 62 ± 7 years with a peak between 60 and 70 years. The average age of hypertension was 12 years and that of diabetes 6 1/2 years. The most frequently associated cardiovascular risk factor was a sedentary lifestyle (71.5%) after age. 57.8% of patients were not controlled at the office, with a predominance of systolic hypertension (58.2%). 61.6% of patients were controlled by ambulatory blood pressure measure, a rate of 47.8% of white coat hypertension. Glycemic control was observed in 42.2% of cases and 87% of patients had good renal function (glomerular filter rate ≥ 60 ml/mn). Therapeutic compliance was good in 53.4% of cases and dual therapy was the most used therapeutic modality 44.8% (52 patients) followed by triple therapy. The factors associated with poor blood pressure control were glycemic imbalance, non-compliance and monotherapy. Dual therapy had a protective effect. Conclusion: The association of hypertension and type 2 diabetes is frequent. The risk of occurrence increases with age. Ambulatory blood pressure measure is the best method to assess blood pressure control. Optimization of blood pressure control should also include optimization of glycemic control.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
文摘To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.
文摘Introduction: Hypertension is a real public health issue and its control is very difficult. We aim to determine the frequency of uncontrolled hypertension in hypertensive patients followed up as an outpatient at the campus university hospital of Lome (Togo) and to search for the associated factors. Methodology: The study was cross-sectional, descriptive and analytical, carried out from February (2022) to August 2022 in 260 hypertensive patients aged 22 years old, followed up (on an) as an outpatient for at least 3 months at the Lome University Hospital campus. A univariate then multivariate analysis were conducted in order to highlight the most common factors significantly linked to uncontrolled. Results: The mean age of hypertensives was 56.4 ± 12.7 years, the sex ratio (M/F) was 0.59. Prevalence of uncontrolled blood pressure was 42%. Associated Factors to poor blood pressure control in our study were age > 60 years (OR = 1.6 CI [1.17 - 2.50]), low socio-economic level (OR = 2.2 CI [1.96 - 4.33]), high cardiovascular risk level (OR = 3.1 CI [2.18 - 4.52]), non-adherence to regular blood pressure monitoring (OR = 3.3 CI [2.21 - 5.55]), low compliance to treatment (OR = 4.1 CI [2.33 - 6.76]) and a chronic renal failure (OR = 2.1 CI [1.21 - 3.10]). Conclusion: Nearly half of the hypertensives in our study had poorly controlled blood pressure by antihypertensive treatment medication. The factors of this poor control were age > 60 years, low socio-economic level, high or very high level of cardiovascular risk, low compliance to treatment, and renal failure.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174041)China Postdoctoral Science Foundation (CPSF)(Grant No. 2022M723118)the seed grants from the Wenzhou Institute,University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.
文摘The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health;therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.
文摘When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We prove that all these works are already explicitly using the self-adjoint Einstein operator, which cannot be parametrized and the comparison needs no comment. As a byproduct, they are all based on a confusion between the so-called div operator D<sub>2</sub> induced from the Bianchi operator and the Cauchy operator, adjoint of the Killing operator D which is parametrizing the Riemann operator D<sub>1</sub> for an arbitrary n. This purely mathematical result deeply questions the origin and existence of gravitational waves, both with the mathematical foundations of general relativity. As a matter of fact, this new framework provides a totally open domain of applications for computer algebra as the quoted test can be studied by means of Pommaret bases and related recent packages.
文摘Objective: To explore the practice and application of infection prevention and control strategies in risk departments during the COVID-19 epidemic, and to formulate the infection prevention and control measures to provide advice and guidance in risk departments. Methods: According to the latest plan of diagnosis and treatment, prevention and control issued by the National Health Commission, expert advice and consensus, combined with the actual situation in our hospital, a series of infection prevention and control measures of COVID-19 in risk department was formulated. Results: During the epidemic period, the prevention and control measures of nine risk departments including emergency operation, anesthesiology, endoscopy center, blood purification center, otolaryngology, stomatology, medical imaging department, medical cosmetology department and pulmonary function room were established from six aspects, including pre-examination and screening, medical technology control, personnel management, personal protection, environmental disinfection, medical waste disposal, etc. Conclusion: During the epidemic period, the infection prevention and control strategy of risk departments is one of the key links to control the spread of the epidemic, and risk departments must pay attention to and strictly implement various infection prevention and control measures.
文摘As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.
基金funded by the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Natural Science Research Project of Higher Education Institutions in Anhui Province(Grant No.2022AH040045)+1 种基金the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(Grant No.2021-YF22)the National College Student Innovation and Entrepreneurship Training Program Project(Grant No.202210878005).
文摘Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends through its“inertial”constant.Due to its unique mechanical properties,TMDI has received widespread attention and application in the past twenty years.As different configurations are required in different practical situations,TMDI is still active in the research on vibration control and energy harvesting in structures.This paper provides a comprehensive review of the research status of TMDI.This work first examines the generation and important vibration control characteristics of TMDI.Then,the energy harvesting performance of electromagnetic tuned mass damper inerter(EM-TMDI)is discussed.This work emphasizes the formation of a passive dynamic vibration absorber by coupling traditional TMD with inertial devices.This paper also summarizes the design and implementation of optimal vibration control and energy harvesting for TMDI.Furthermore,this paper details the applications of TMDI in the fields of bridges and building engineering.Finally,this paper summarizes the necessity of research on tuned mass-damper-inertia,the challenges faced currently,and future research directions,such as control of parameters in electromagnetic energy harvesting TMDI systems and low-cost TMDI.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金financially supported by the CNPC Prospective Basic Science and Technology Special Project(2023ZZ08)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103)。
文摘Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.
文摘Millet (Pennisetum glaucum (L.) R. Br.) is the Sahelian crop par excellence due to its adaptation to the particular production conditions in this region. Unfortunately, in recent years this crop has been threatened by very strong parasitic pressure and drought during the production period. The objective of this study is to analyze the main constraints of millet production and the solutions known to producers. A survey was carried out in November 2022 with a sample of 298 producers in five municipalities in the Tahoua region. The main constraints are drought and pressure from crop pests (locust, millet ear miner, floricultural insects) according to 57.9% of respondents. The millet ear miner is the most formidable pest according to 55% of respondents. Thus, the average yield obtained in a year of good production without the leafminer is 194 kg/ha and that obtained in a year of millet ear leafminer is around 27 kg to 43 kg/ha depending on the municipality. The yield obtained this last campaign after the attack of this leafminer varies from 64 to 77 kg/ha depending on the municipalities compared to a potential yield of over 1000 kg/ha. More than half of producers (58.1%) are unaware of the existence of biological control compared to only 12.5% who are aware of this alternative method. Work to popularize this technology is necessary in the five municipalities and the entire region in general.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
基金Scientific Research Project of Liaoning Province Education Department,Code:LJKQZ20222457&LJKMZ20220781Liaoning Province Nature Fund Project,Code:No.2022-MS-291.
文摘As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.
文摘Geothermal is a clean energy source that is freely available in the subsurface. The exploitation of this vital resource needs intensive exploration in order to identify and quantify its occurrence. The three parameters considered when assessing the viability of a geothermal system include;heat source, fractures and fluids. Geological structures are important in transportation of fluids to and from the heat source aiding in recharge of the geothermal system and enhancing productivity. Remote sensing method was applied in mapping the structures at Barrier Volcanic Complex (BVC) by using hill shading technique which utilized four illumination angles of the sun (azimuth) i.e. 45°, 90°, 150°, and 315°, constant elevation of 45° and exaggeration of 10. The data used was Shuttle Radar Topographic Mission (SRTM) Satellite Imagery. ArcGIS Software was used for lineaments delineation and density mapping, PCI Geomatica was used to generate major faults, while Georose and Rockworks 17 were used to generate the rose diagrams. Geological structural analysis was done by delineating lineaments, determining the density distribution of lineaments and finally determining the structural trends of lineaments. The generated major faults in the area and the location of the occurrence of surface manifestations were compared with the generated lineaments. A total of 260 lineaments were generated whereby at 45° there was a total of 60 lineaments, at 90° 95 lineaments, at 150° 61 lineaments, and at 315° 44 lineaments. The results of structural analysis in the area as shown by the rose diagrams indicate an NNE-SSW and N-S trending of structures. In conclusion, the study area is highly fractured as indicated by the presence of numerous lineaments. These lineaments provide good recharge to the geothermal system and enhance the geothermal reservoir in the area.