Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology ha...Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides, oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.展开更多
The study focused on the fluid-bed granulation process of a product with two active pharmaceutical ingredients,intended for coated tablets preparation and further transfer to industrial scale.The work aimed to prove t...The study focused on the fluid-bed granulation process of a product with two active pharmaceutical ingredients,intended for coated tablets preparation and further transfer to industrial scale.The work aimed to prove that an accurate control of the critical granulation parameters can level the input material variability and offer a user-friendly process control strategy.Moreover,an in-line Near-Infrared monitoring method was developed,which offered a real time overview of the moisture level along the granulation process,thus a reliable supervision and control process analytical technology(PAT)tool.The experimental design’s results showed that the use of apparently interchangeable active pharmaceutical ingredients(APIs)and filler sorts that comply with pharmacopoeial specifications,lead to different end-product critical attributes.By adapting critical granulation parameters(i.e.binder spray rate and atomising pressure)as a function of material characteristics,led to granules with average sizes comprised in a narrow range of 280–320μm and low nongranulated fraction of under 5%.Therefore,the accurate control of process parameters according to the formulation particularities achieved the maintenance of product within the design space and removed material related variability.To complete the Quality by design(QbD)strategy,despite its limited spectral domain,the microNIR spectrometer was successfully used as a robust PAT monitoring tool that offered a real time overview of the moisture level and allowed the supervision and control of the granulation process.展开更多
Biomacromolecules are attractive in biomedical applications as therapeutic agents and potential drug carriers due to their natural active components,good biocompatibility,and high targeting.However,their large relativ...Biomacromolecules are attractive in biomedical applications as therapeutic agents and potential drug carriers due to their natural active components,good biocompatibility,and high targeting.However,their large relative molecular weight,complex structure,susceptibility to degradation,and poor stability limit their usefulness.Nanotechnology can address these issues by improving the therapeutic value,bioavailability,permeability,and absorption of biomacromolecules while regulating their retention time in the body.Especially,compelling evidence has been reported that supercritical fluid(SCF)technology has emerged as an alternative that maintains the integrity of biomacromolecules and reduces environmental contamination.In this review,we highlight a set of unique nanosizing strategies based on SCF technology for biomacromolecular nanomedicine,and extensively discuss their characteristics and mechanisms.In particular,the protein-based,nucleic acid-based,and polysaccharide-based nanomedicine preparations via SCF technology and their biomedical applications are summarized,and the potential for industrial production of biomacromolecular drugs is also considered.We further provide perspectives on the opportunities and challenges in this excellent field of biomacromolecular drugs nanotechnology.展开更多
Taking extraction rate as an indicator,the extraction technology of Chinese-fir heartwood by supercritical carbon dioxide treatment was studied, and the extraction rate of the SFE-CO<sub>2</sub> method was...Taking extraction rate as an indicator,the extraction technology of Chinese-fir heartwood by supercritical carbon dioxide treatment was studied, and the extraction rate of the SFE-CO<sub>2</sub> method was compared to that of traditional extraction method. The results show that when extraction processing condition were:extraction pressure 30 MPa,extraction temperature 40℃,extraction time 120 m,and flow velocity 20 kg/h,the extraction rate of SFE-CO<sub>2</sub> was 0.99%,0.20%more than that of the traditional extraction method.However,taking the cost into consideration,it is proposed that the traditional extraction is used unless there are specific requirements.展开更多
Aripiprazole(ARI),a second-generation atypical antipsychotic drug approved for schizophrenia treatment,shows good efficacy against depression.However,the poorly aqueous solubility of ARI leads to low bioavailability a...Aripiprazole(ARI),a second-generation atypical antipsychotic drug approved for schizophrenia treatment,shows good efficacy against depression.However,the poorly aqueous solubility of ARI leads to low bioavailability and increased dose-related side effects,seriously limiting its application in pharmaceutics.Herein,we demonstrated the fabrication of ARI and poly(methyl vinyl etherco-maleic anhydride)(PVMMA)composite nanoparticles(PA NPs)using the supercritical antisolvent(SAS)process for enhancing its water-solubility and curative anti-depressant effects.Initially,the optimal experimental conditions(ARI/PVMMA mass ratio of 1:6,pressure of 10MPa,and solution flow rate of 0.75ml min^(-1))were determined by a 23 factorial experimental design,resulting in the PA NPs with an excellent particle morphology.In vitro cell experiments showed that PA NPs significantly inhibited the inflammatory response caused by the microglia activation induced by lipopolysaccharide(LPS).Similarly,mice behavioral tests demonstrated that PA NPs significantly improved LPS-induced depression-like behavior.Importantly,compared with free ARI,the LPS-induced activation of microglia in the mouse brain and the expression of inflammatory factors in serum were significantly reduced after treatment with PA NPs.Together,the innovative PA NPs designed by SAS processmight provide a candidate for developing new ARI-based nano-formulations.展开更多
文摘Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides, oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.
基金This work was supported by the Romanian National Authority for Scientific Research and Innovation,CNCS-UEFISCDI[project number PN-III-P2-2.1-BG-2016-0201].
文摘The study focused on the fluid-bed granulation process of a product with two active pharmaceutical ingredients,intended for coated tablets preparation and further transfer to industrial scale.The work aimed to prove that an accurate control of the critical granulation parameters can level the input material variability and offer a user-friendly process control strategy.Moreover,an in-line Near-Infrared monitoring method was developed,which offered a real time overview of the moisture level along the granulation process,thus a reliable supervision and control process analytical technology(PAT)tool.The experimental design’s results showed that the use of apparently interchangeable active pharmaceutical ingredients(APIs)and filler sorts that comply with pharmacopoeial specifications,lead to different end-product critical attributes.By adapting critical granulation parameters(i.e.binder spray rate and atomising pressure)as a function of material characteristics,led to granules with average sizes comprised in a narrow range of 280–320μm and low nongranulated fraction of under 5%.Therefore,the accurate control of process parameters according to the formulation particularities achieved the maintenance of product within the design space and removed material related variability.To complete the Quality by design(QbD)strategy,despite its limited spectral domain,the microNIR spectrometer was successfully used as a robust PAT monitoring tool that offered a real time overview of the moisture level and allowed the supervision and control of the granulation process.
基金supported by the Major State Basic Research Development Program of China(Nos.2023YFB3810000 and 2018YFA0107301)the National Natural Science Foundation of China(NSFC)(Nos.U22A20333,81925019,U1705281,and 82202330)+4 种基金the Fundamental Research Funds for the Central Universities(Nos.20720190088 and 20720200019)the Science Foundation of Fujian Province(No.2020Y4003)the Program for New Century Excellent Talents in University,China(No.NCET-13-0502)Shenzhen Science and Technology Program(No.JCYJ20220530143213029)China Postdoctoral Science Foundation(No.2023T160383)。
文摘Biomacromolecules are attractive in biomedical applications as therapeutic agents and potential drug carriers due to their natural active components,good biocompatibility,and high targeting.However,their large relative molecular weight,complex structure,susceptibility to degradation,and poor stability limit their usefulness.Nanotechnology can address these issues by improving the therapeutic value,bioavailability,permeability,and absorption of biomacromolecules while regulating their retention time in the body.Especially,compelling evidence has been reported that supercritical fluid(SCF)technology has emerged as an alternative that maintains the integrity of biomacromolecules and reduces environmental contamination.In this review,we highlight a set of unique nanosizing strategies based on SCF technology for biomacromolecular nanomedicine,and extensively discuss their characteristics and mechanisms.In particular,the protein-based,nucleic acid-based,and polysaccharide-based nanomedicine preparations via SCF technology and their biomedical applications are summarized,and the potential for industrial production of biomacromolecular drugs is also considered.We further provide perspectives on the opportunities and challenges in this excellent field of biomacromolecular drugs nanotechnology.
文摘Taking extraction rate as an indicator,the extraction technology of Chinese-fir heartwood by supercritical carbon dioxide treatment was studied, and the extraction rate of the SFE-CO<sub>2</sub> method was compared to that of traditional extraction method. The results show that when extraction processing condition were:extraction pressure 30 MPa,extraction temperature 40℃,extraction time 120 m,and flow velocity 20 kg/h,the extraction rate of SFE-CO<sub>2</sub> was 0.99%,0.20%more than that of the traditional extraction method.However,taking the cost into consideration,it is proposed that the traditional extraction is used unless there are specific requirements.
基金supported by the National Natural Science Foundation of China(NSFC,81971734,32071323,32271410),the Program for Innovative Research Team in Science and Technology in Fujian Province.
文摘Aripiprazole(ARI),a second-generation atypical antipsychotic drug approved for schizophrenia treatment,shows good efficacy against depression.However,the poorly aqueous solubility of ARI leads to low bioavailability and increased dose-related side effects,seriously limiting its application in pharmaceutics.Herein,we demonstrated the fabrication of ARI and poly(methyl vinyl etherco-maleic anhydride)(PVMMA)composite nanoparticles(PA NPs)using the supercritical antisolvent(SAS)process for enhancing its water-solubility and curative anti-depressant effects.Initially,the optimal experimental conditions(ARI/PVMMA mass ratio of 1:6,pressure of 10MPa,and solution flow rate of 0.75ml min^(-1))were determined by a 23 factorial experimental design,resulting in the PA NPs with an excellent particle morphology.In vitro cell experiments showed that PA NPs significantly inhibited the inflammatory response caused by the microglia activation induced by lipopolysaccharide(LPS).Similarly,mice behavioral tests demonstrated that PA NPs significantly improved LPS-induced depression-like behavior.Importantly,compared with free ARI,the LPS-induced activation of microglia in the mouse brain and the expression of inflammatory factors in serum were significantly reduced after treatment with PA NPs.Together,the innovative PA NPs designed by SAS processmight provide a candidate for developing new ARI-based nano-formulations.