Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
Material exchange frequently occurs in gullies,and thus the relationship between a gullynetwork structure and sediment transport potential has attracted considerable interest.However,previous researches ignored the di...Material exchange frequently occurs in gullies,and thus the relationship between a gullynetwork structure and sediment transport potential has attracted considerable interest.However,previous researches ignored the difficulty of material transport from sources to sinks,and did not quantify the connectivity of a network structure.In this study,we used a graph model structure to model gully networks of six typical sample areas in the Loess Plateau of China and quantified gully network connectivity using four indexes:average node strength,accessibility from sources to sinks,potential flow,and network structural connectivity index.Results show that:(1)Reflected by different quantitative indexes,the trends of gully network connectivity in different regions are similar.From north to south,the connectivity of a sample area first increases and then decreases.(2)The more mature gullies have stronger network connectivity.Small resistance is conducive to material transport in the gullies.(3)The node connectivity index of the gully network shows a significant aggregation distribution in space,and node connectivity on the main channel is often stronger than that on the branch trench.These results not only deepen the understanding of the process and mechanism of loess gully geomorphic development and evolution but also provide a reference for geomorphic studies.展开更多
The gully region of Loess Plateau is one of the earliest human settlement areas and the most ecologically sensitive areas in China. It has been facing challenges for future development. Gully village is the smallest s...The gully region of Loess Plateau is one of the earliest human settlement areas and the most ecologically sensitive areas in China. It has been facing challenges for future development. Gully village is the smallest social units on Loess Plateau that owns large amount of agricultural population. However, due to inappropriate development planning and lack of developing directions, they are gradually disappearing. Based on the practical investigations of the Gully Regions of Loess Plateau, this paper aims to explore a new way for the future development of gully villages. Firstly, it classifies the gully villages by the distribution of location. Secondly, selecting ecological construction evaluation factors of gully village and completing the quantitative evaluation are applied on the suitability and sensitivity of ecological sustainable development classification. Thirdly, according to the comprehensive evaluation, the developing condition of each gully village is divided into “Good”, “General” and “Poor”. Finally, this paper figures out the future developing direction for gully villages in different developing conditions.展开更多
As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed...As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.展开更多
The quantitative evaluation on land use /cover change as well as its influence on landscape pattern under the background of returning grain plots to forestry is significant to the sustainable utilization of land resou...The quantitative evaluation on land use /cover change as well as its influence on landscape pattern under the background of returning grain plots to forestry is significant to the sustainable utilization of land resources and ecological environment reconstruction in the southern Ningxia.Based on multi-temporal remote sensing data from four periods of Landsat TM /ETM,and combination of ecological quantity analytical method with GIS,the change of land use /cover and landscape pattern in Pengyang County of Ningxia Province were analyzed.The conclusions showed that the amount of each land use type was changed with different degrees,the area of forest /grass land increased,while farmland and unused land decreased.The change of landscape pattern was characterized as that the degree of landscape fragmentation,mixed distribution of patches,diversity index and evenness index increased gradually and then decreased,the connectivity between patches decreased gradually and then increased,and landscape shape presented irregular.展开更多
Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), t...Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), two woodlands (Prunus armeniaca var. ansu and Pinus tabulaeformis), cultivated fallow, and farmland (Triticum aestiuum L.) in order to obtain a better understanding of soil moisture balance principles and to improve vegetation restoration efficiency for ecological rebuilding on the plateau. Average runoff from cultivated fallow was very high, reaching 10.3% of the seasonal rainfall. Evapotranspiration under T. aestivurn was not significantly different from natural grasslands. Compared with natural grass, evapotranspiration was significantly greater (P 〈 0.05) in 2002 and there was an increase in soil moisture depleted in the 1-3 m soil under P. armeniaca, P. tabulaeformis and C. microphylla. During the two years of the study the average soil moisture (0-100 cm soil profile) of T. aestivurn was generally the highest, with P. armeniaca, P. tabulaeformis and C. rnicrophylla usually the lowest. Thus, according to the soil moisture balance principle for this area the planned reforestation project was not ecologically reasonable. Reducing human disturbance and restoration with grass could be more effective.展开更多
[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temp...[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.展开更多
The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been rega...The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been regarded as a powerful measure for the ecological restoration in the Loess Plateau and the upper reaches of the Yangtze River. "Relieving and de-farming" (RD) and "rebuilding terrace and de-farming" (RTD) are two more mature ones among various de-farming modes. Taking the loess hilly-gully region as a case, this paper summarized the basic characteristics of RD and RTD modes, calculated the sizes of de-farming slope farmland, rebuilt terraces, enlarged garden plots and restored vegetation, and compared the differences of two modes in terms of de-farming area, ecological reestablishment index, investment demand amount and benefits. The results showed that RTD mode has many advantages, including suitable investment, sufficient grain supply and great benefits, and will be the best ecological reestablishment mode in the loess hilly-gully region, and RD mode which is being carried out in this region should be replaced by RTD mode as soon as possible.展开更多
The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface...The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface energy and water exchange over the Chinese Loess Plateau mesa region are evaluated by using data collected during the Loess Plateau land-atmosphere interaction pilot experiment (LOPEX04), which was conducted from 25 August to 12 September 2004 near Pingliang city, Gansu Province of China. The experiment was carried out in a region with a typical landscape of the Chinese Loess Plateau, known as "loess mesa". The experiment's field land utilizations were cornfield and fallow farmland, with the fallow field later used for rotating winter wheat. The autumn daily characteristics of heat and water exchange evidently differed between the mesa cornfield and fallow, and the imbalance term of the surface energy was large. This is discussed in terms of sampling errors in the flux observations-footprint; energy storage terms of soil and vegetation layers; contribution from air advections; and low and high frequency loss of turbulent fluxes and instruments bias. Comparison of energy components between the mesa cornfield and the lowland cornfield did not reveal any obvious difference. Inadequacies of the field observation equipment and experimental design emerged during the study, and some new research topics have emerged from this pilot experiment for future investigation.展开更多
Rainfall can cause serious soil loss in the Loess Plateau hilly and gully region, but little focus has been placed on the extreme rainstorm effects on unpaved loess road soil erosion. A field survey method was used to...Rainfall can cause serious soil loss in the Loess Plateau hilly and gully region, but little focus has been placed on the extreme rainstorm effects on unpaved loess road soil erosion. A field survey method was used to investigate the erosional effects of the '7·26' heavy rainfall event on unpaved loess roads in the Jiuyuangou watershed of the Loess Plateau, China. The results showed that the average and maximum widths of the eroded gullies that formed on the unpaved roads were 0.65-1.48 m and 1.00-3.60 m, respectively. The average and maximum depths of theeroded gullies were 0.42-1.13 m and 0.75-4.30 m, respectively. The average width-to-depth ratio was 1.31, indicating that the widening effect was greater than the downcutting effect in the eroded gullies. In addition, the gully density ranged from 0.07 to 0.29 m m-2, and the road surface dissection degree ranged from 0.03 to 0.41 km2 km-2. Eroded gullies generally developed at the slope toe of the cut bank side. The average eroded gully width and depth at turns in the road were 1.47-2.64 times and 1.30-3.47 times greater, respectively, than those in other road sections. The road erosion modulus increased from the upper section to the lower section of the roads. The average road erosion modulus of the study catchment was 235,000 t km-2. Turns in the road were associated with collapses, sinkholes and other gravitational erosion phenomena. The amount of road erosion under extreme rainfall conditions is mainly related to the interactions among road length, width, slope and soil bulk density. Our results provide a useful reference for developing further measures for preventing road erosion on the Loess Plateau.展开更多
In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecologica...Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecological carrying capacity and ecological surplus/loss in 1986-2002 on the Loess Plateau in northern Shaanxi Province. What is more, this paper has put forward the concept of ecological pressure index, set up ecological pressure index models, and ecological security grading systems, and the prediction models of different ecological footprints, ecological carrying capacity, ecological surplus and ecological safety change, and also has assessed the ecological footprint demands of 10,000 yuan GDE The results of this study are as follows: (1) the ecological carrying capacity in northern Shaanxi shows a decreasing trend, the difference of reducing range is the fastest; (2) the ecological footprint appears an increasing trend; (3) ecological pressure index rose to 0.91 from 0.44 during 1986-2002 on the Loess Plateau of northern Shaanxi with an increase of 47%; and (4) the ecological security in the study area is in a critical state, and the ecological oressure index has been increasing rapidlv.展开更多
Check-dams are the most important measure to control the soil and water loss in highly erodible catchments on the Chinese Loess Plateau.Based on the data of check-dams from 1950 to 2014,our study roundly analyzed the ...Check-dams are the most important measure to control the soil and water loss in highly erodible catchments on the Chinese Loess Plateau.Based on the data of check-dams from 1950 to 2014,our study roundly analyzed the regional distribution,function and the problems of check-dams on the Loess Plateau.A total of 17,094 check-dams with a storage capacity of over 100,000 m^(3) and an average density of 0.027 counts km^(-2) were installed on the Loess Plateau.Check-dams’densities varied greatly in the Qinghai Province,Gansu Province,Ningxia Hui Autonomous Region,Inner Mongolia Autonomous Region,Shaanxi Province,Shanxi Province and Henan Province.The highest density of check-dams reached 0.088 counts km^(-2) in Shaanxi Province,whereas the lowest density of check-dams was only 0.005 counts km^(-2) in Qinghai Province.However,after decades of operation,3025 large check-dams and 2257 medium check dams are dangerous and have security risks,which are seriously threatening downstream safety.The dangerous rate of checkdams is high.Specifically,the check-dams in Shanxi and Qinghai Province have the highest dangerous rates,with both exceeding 53%.Therefore,there is an urgent need for carrying out reinforcement of the dangerous check-dams.The results are helpful to policymakers to extend and develop check-dams.展开更多
The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project s...The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project subsidy approaching the end, it is concerned that farmers of fewer subsidies may reclaim land again. Thus, ′Gully Land Consolidation Project′(GLCP) was initiated in 2010. The core of the GLCP was to create more land suitable for farming in gullies so as to reduce land reclamation on the slopes which are ecological vulnerable areas. This paper aims to assess the effect of the GLCP on soil erosion problems by studying Wangjiagou project region located in the central part of Anzi valley in the middle of the Loess Plateau, mainly using the revised universal soil loss equation(RUSLE) based on GIS. The findings show that the GLCP can help to reduce soil shipment by 9.87% and it creates more terraces and river-nearby land suitable for farming which account for 27.41% of the whole study area. Thus, it is feasible to implement the GLCP in places below gradient 15°, though the GLCP also intensifies soil erosion in certain places such as field ridge, village land, floodplain, natural grassland, and shrub land. In short, the GLCP develops new generation dam land and balances the short-term and long-term interests to ease the conflicts between economic development and environmental protection. Furthermore, the GLCP and the GFG could also be combined preferably. On the one hand, the GFG improves the ecological environment, which could offer certain safety to the GLCP, on the other hand, the GLCP creates more farmland favorable for farming in gullies instead of land reclamation on the slopes, which could indirectly protect the GFG project.展开更多
With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang T...With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.展开更多
The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo...The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.展开更多
To study the dynamic changes of land use and predict the future land use scenarios based on the current land use,this paper uses Cellular Automata- Markov( CA- Markov) model to simulate the landscape pattern in 2030. ...To study the dynamic changes of land use and predict the future land use scenarios based on the current land use,this paper uses Cellular Automata- Markov( CA- Markov) model to simulate the landscape pattern in 2030. The results show that in the study area during the period 1980- 2005,grassland and construction land increased,and woodland increased slightly; waters and unused land decreased,and arable land underwent dramatic changes. The simulation precision of CA- Markov model is 87. 28%,indicating that the use of it for simulation is reliable. The land use of the study area will be changed greatly in the future. This method provides a reference for the regions to carry out land prediction,and the research results can provide a basis for the study of optimization of land.展开更多
Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different s...Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.展开更多
The Liupan Mountains is located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains r...The Liupan Mountains is located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains region has suffered tremendous ecological damages over time due to population pressure, excessive demand and inappropriate use of agricultural land resources. In this paper, datasets of land use between 1990 and 2000 were obtained from Landsat TM imagery, and then spatial models were used to characterize landscape conditions. Also, the relationship between the population density and land use/cover change (LUCC) was analyzed. Results indicate that cropland, forestland, and urban areas have increased by 44,186ha, 9001ha and 1550ha, respectively while the grassland area has appreciably decreased by 54,025ha in the study period. The decrease in grassland was most notable. Of the grassland lost, 49.4% was converted into cropland. The largest annual land conversion rate in the study area was less than 2%. These changes are attributed to industrial and agricultural development and population growth. To improve the eco-economic conditions in the study region, population control, urbanization and development of an ecological friendly agriculture were suggested.展开更多
Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation domina...Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation dominated landscape then was replaced by a coniferous forest under a generally wet climate (12.1-11.0 ka BP). The vegetation was deteriorated into steppe landscape and further into a desert-steppe landscape between 11.0 and 9.8 ka BP. After a brief episode of a cool and wet climate (9.8-9.6 ka BP), a relatively mild and dry condition prevailed during the early Holocene (9.6-7.6 ka BP). The most favourable climate of warm and humid period occurred during mid-Holocene (7.6-4.0 ka BP) marked by forest-steppe landscape and vegetation alternatively changed between steppe and desert-steppe from -4.0 to -1.0 ka BP.展开更多
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
基金supported by the National Natural Science Foundation of China(Grant Nos.42271421 and 41930102)。
文摘Material exchange frequently occurs in gullies,and thus the relationship between a gullynetwork structure and sediment transport potential has attracted considerable interest.However,previous researches ignored the difficulty of material transport from sources to sinks,and did not quantify the connectivity of a network structure.In this study,we used a graph model structure to model gully networks of six typical sample areas in the Loess Plateau of China and quantified gully network connectivity using four indexes:average node strength,accessibility from sources to sinks,potential flow,and network structural connectivity index.Results show that:(1)Reflected by different quantitative indexes,the trends of gully network connectivity in different regions are similar.From north to south,the connectivity of a sample area first increases and then decreases.(2)The more mature gullies have stronger network connectivity.Small resistance is conducive to material transport in the gullies.(3)The node connectivity index of the gully network shows a significant aggregation distribution in space,and node connectivity on the main channel is often stronger than that on the branch trench.These results not only deepen the understanding of the process and mechanism of loess gully geomorphic development and evolution but also provide a reference for geomorphic studies.
文摘The gully region of Loess Plateau is one of the earliest human settlement areas and the most ecologically sensitive areas in China. It has been facing challenges for future development. Gully village is the smallest social units on Loess Plateau that owns large amount of agricultural population. However, due to inappropriate development planning and lack of developing directions, they are gradually disappearing. Based on the practical investigations of the Gully Regions of Loess Plateau, this paper aims to explore a new way for the future development of gully villages. Firstly, it classifies the gully villages by the distribution of location. Secondly, selecting ecological construction evaluation factors of gully village and completing the quantitative evaluation are applied on the suitability and sensitivity of ecological sustainable development classification. Thirdly, according to the comprehensive evaluation, the developing condition of each gully village is divided into “Good”, “General” and “Poor”. Finally, this paper figures out the future developing direction for gully villages in different developing conditions.
基金supported by the National Basic Research Program of China (2007CB407207)National Natural Science Foundation of China (30800888)
文摘As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.
基金Supported by National Natural Science Foundation(41161081)
文摘The quantitative evaluation on land use /cover change as well as its influence on landscape pattern under the background of returning grain plots to forestry is significant to the sustainable utilization of land resources and ecological environment reconstruction in the southern Ningxia.Based on multi-temporal remote sensing data from four periods of Landsat TM /ETM,and combination of ecological quantity analytical method with GIS,the change of land use /cover and landscape pattern in Pengyang County of Ningxia Province were analyzed.The conclusions showed that the amount of each land use type was changed with different degrees,the area of forest /grass land increased,while farmland and unused land decreased.The change of landscape pattern was characterized as that the degree of landscape fragmentation,mixed distribution of patches,diversity index and evenness index increased gradually and then decreased,the connectivity between patches decreased gradually and then increased,and landscape shape presented irregular.
基金Project supported by the National Science and Technology Advanced Project of the Tenth Five-year Plan(No. 2001BA606A-03) and the National Natural Science Foundation of China (No. 40321101).
文摘Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), two woodlands (Prunus armeniaca var. ansu and Pinus tabulaeformis), cultivated fallow, and farmland (Triticum aestiuum L.) in order to obtain a better understanding of soil moisture balance principles and to improve vegetation restoration efficiency for ecological rebuilding on the plateau. Average runoff from cultivated fallow was very high, reaching 10.3% of the seasonal rainfall. Evapotranspiration under T. aestivurn was not significantly different from natural grasslands. Compared with natural grass, evapotranspiration was significantly greater (P 〈 0.05) in 2002 and there was an increase in soil moisture depleted in the 1-3 m soil under P. armeniaca, P. tabulaeformis and C. microphylla. During the two years of the study the average soil moisture (0-100 cm soil profile) of T. aestivurn was generally the highest, with P. armeniaca, P. tabulaeformis and C. rnicrophylla usually the lowest. Thus, according to the soil moisture balance principle for this area the planned reforestation project was not ecologically reasonable. Reducing human disturbance and restoration with grass could be more effective.
文摘[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.
基金National Natural Science Foundation of China No.40371051+1 种基金 Knowledge Innovation Project of Chinese Academy of Sciences No.KZCX1-6-2-6
文摘The eco-environmental restoration has been a chief task of the western development strategies carried out by the central and local governments of China since the late 1990s, and the ecological de-farming has been regarded as a powerful measure for the ecological restoration in the Loess Plateau and the upper reaches of the Yangtze River. "Relieving and de-farming" (RD) and "rebuilding terrace and de-farming" (RTD) are two more mature ones among various de-farming modes. Taking the loess hilly-gully region as a case, this paper summarized the basic characteristics of RD and RTD modes, calculated the sizes of de-farming slope farmland, rebuilt terraces, enlarged garden plots and restored vegetation, and compared the differences of two modes in terms of de-farming area, ecological reestablishment index, investment demand amount and benefits. The results showed that RTD mode has many advantages, including suitable investment, sufficient grain supply and great benefits, and will be the best ecological reestablishment mode in the loess hilly-gully region, and RD mode which is being carried out in this region should be replaced by RTD mode as soon as possible.
文摘The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface energy and water exchange over the Chinese Loess Plateau mesa region are evaluated by using data collected during the Loess Plateau land-atmosphere interaction pilot experiment (LOPEX04), which was conducted from 25 August to 12 September 2004 near Pingliang city, Gansu Province of China. The experiment was carried out in a region with a typical landscape of the Chinese Loess Plateau, known as "loess mesa". The experiment's field land utilizations were cornfield and fallow farmland, with the fallow field later used for rotating winter wheat. The autumn daily characteristics of heat and water exchange evidently differed between the mesa cornfield and fallow, and the imbalance term of the surface energy was large. This is discussed in terms of sampling errors in the flux observations-footprint; energy storage terms of soil and vegetation layers; contribution from air advections; and low and high frequency loss of turbulent fluxes and instruments bias. Comparison of energy components between the mesa cornfield and the lowland cornfield did not reveal any obvious difference. Inadequacies of the field observation equipment and experimental design emerged during the study, and some new research topics have emerged from this pilot experiment for future investigation.
基金funded by the National Key Research and Development Program of China (2016YFC0501604)the National Natural Science Foundation of China (40771127)
文摘Rainfall can cause serious soil loss in the Loess Plateau hilly and gully region, but little focus has been placed on the extreme rainstorm effects on unpaved loess road soil erosion. A field survey method was used to investigate the erosional effects of the '7·26' heavy rainfall event on unpaved loess roads in the Jiuyuangou watershed of the Loess Plateau, China. The results showed that the average and maximum widths of the eroded gullies that formed on the unpaved roads were 0.65-1.48 m and 1.00-3.60 m, respectively. The average and maximum depths of theeroded gullies were 0.42-1.13 m and 0.75-4.30 m, respectively. The average width-to-depth ratio was 1.31, indicating that the widening effect was greater than the downcutting effect in the eroded gullies. In addition, the gully density ranged from 0.07 to 0.29 m m-2, and the road surface dissection degree ranged from 0.03 to 0.41 km2 km-2. Eroded gullies generally developed at the slope toe of the cut bank side. The average eroded gully width and depth at turns in the road were 1.47-2.64 times and 1.30-3.47 times greater, respectively, than those in other road sections. The road erosion modulus increased from the upper section to the lower section of the roads. The average road erosion modulus of the study catchment was 235,000 t km-2. Turns in the road were associated with collapses, sinkholes and other gravitational erosion phenomena. The amount of road erosion under extreme rainfall conditions is mainly related to the interactions among road length, width, slope and soil bulk density. Our results provide a useful reference for developing further measures for preventing road erosion on the Loess Plateau.
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
基金National Natural Science Foundation of China, No.40371003 Ministry of Education of China, No.01158 Master Research Project of Shaanxi Normal University
文摘Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecological carrying capacity and ecological surplus/loss in 1986-2002 on the Loess Plateau in northern Shaanxi Province. What is more, this paper has put forward the concept of ecological pressure index, set up ecological pressure index models, and ecological security grading systems, and the prediction models of different ecological footprints, ecological carrying capacity, ecological surplus and ecological safety change, and also has assessed the ecological footprint demands of 10,000 yuan GDE The results of this study are as follows: (1) the ecological carrying capacity in northern Shaanxi shows a decreasing trend, the difference of reducing range is the fastest; (2) the ecological footprint appears an increasing trend; (3) ecological pressure index rose to 0.91 from 0.44 during 1986-2002 on the Loess Plateau of northern Shaanxi with an increase of 47%; and (4) the ecological security in the study area is in a critical state, and the ecological oressure index has been increasing rapidlv.
基金supported by the Open Research Program of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(SKLGP2020K009)the Open Research Program of the Key Laboratory of Mountain Hazards and Earth Surface Processes,Chinese Academy of Sciences(KLMHESP-20-03)the CRSRI Open Research Program(CKWV2019762/KY)。
文摘Check-dams are the most important measure to control the soil and water loss in highly erodible catchments on the Chinese Loess Plateau.Based on the data of check-dams from 1950 to 2014,our study roundly analyzed the regional distribution,function and the problems of check-dams on the Loess Plateau.A total of 17,094 check-dams with a storage capacity of over 100,000 m^(3) and an average density of 0.027 counts km^(-2) were installed on the Loess Plateau.Check-dams’densities varied greatly in the Qinghai Province,Gansu Province,Ningxia Hui Autonomous Region,Inner Mongolia Autonomous Region,Shaanxi Province,Shanxi Province and Henan Province.The highest density of check-dams reached 0.088 counts km^(-2) in Shaanxi Province,whereas the lowest density of check-dams was only 0.005 counts km^(-2) in Qinghai Province.However,after decades of operation,3025 large check-dams and 2257 medium check dams are dangerous and have security risks,which are seriously threatening downstream safety.The dangerous rate of checkdams is high.Specifically,the check-dams in Shanxi and Qinghai Province have the highest dangerous rates,with both exceeding 53%.Therefore,there is an urgent need for carrying out reinforcement of the dangerous check-dams.The results are helpful to policymakers to extend and develop check-dams.
基金Under the auspices of National Natural Science Foundation of China(No.41130748,41471143)
文摘The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project subsidy approaching the end, it is concerned that farmers of fewer subsidies may reclaim land again. Thus, ′Gully Land Consolidation Project′(GLCP) was initiated in 2010. The core of the GLCP was to create more land suitable for farming in gullies so as to reduce land reclamation on the slopes which are ecological vulnerable areas. This paper aims to assess the effect of the GLCP on soil erosion problems by studying Wangjiagou project region located in the central part of Anzi valley in the middle of the Loess Plateau, mainly using the revised universal soil loss equation(RUSLE) based on GIS. The findings show that the GLCP can help to reduce soil shipment by 9.87% and it creates more terraces and river-nearby land suitable for farming which account for 27.41% of the whole study area. Thus, it is feasible to implement the GLCP in places below gradient 15°, though the GLCP also intensifies soil erosion in certain places such as field ridge, village land, floodplain, natural grassland, and shrub land. In short, the GLCP develops new generation dam land and balances the short-term and long-term interests to ease the conflicts between economic development and environmental protection. Furthermore, the GLCP and the GFG could also be combined preferably. On the one hand, the GFG improves the ecological environment, which could offer certain safety to the GLCP, on the other hand, the GLCP creates more farmland favorable for farming in gullies instead of land reclamation on the slopes, which could indirectly protect the GFG project.
文摘With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.
基金Under the auspices of Northeast Normal University Sci-tech Innovation Incubation Program(No.NENU-STC08017)European Commission FP7 Project―PRACTICE(No.ENVI-2008-226818)
文摘The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.
基金Supported by National Natural Science Foundation of China(41271159)Engagement Fund of Xi'an University of Science and Technology(201103)+1 种基金Doctor Startup Fund of Xi'an University of Science and Technology(2011QDJ036)College Students' Innovation and Entrepreneurship Training Program of XUST(S13018)
文摘To study the dynamic changes of land use and predict the future land use scenarios based on the current land use,this paper uses Cellular Automata- Markov( CA- Markov) model to simulate the landscape pattern in 2030. The results show that in the study area during the period 1980- 2005,grassland and construction land increased,and woodland increased slightly; waters and unused land decreased,and arable land underwent dramatic changes. The simulation precision of CA- Markov model is 87. 28%,indicating that the use of it for simulation is reliable. The land use of the study area will be changed greatly in the future. This method provides a reference for the regions to carry out land prediction,and the research results can provide a basis for the study of optimization of land.
基金Supported by"948"Project of the Ministry of Water Resources(2015-22)Key Technology R&D Program Project of Gansu Province(1204FKCA069)Key Scientific Research Project of Water Resources of Gansu Province(2012-255)
文摘Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.
基金Under the auspices of the National Key Science and Technology Support Program of China (No. 2006BCA01A07-2)National Natural Science Foundation of China (No. 40671153)+1 种基金Hunan Land Resource Bureau Program (No. 2007-15)Hunan Educa-tion Bureau Program (No. 08C348)
文摘The Liupan Mountains is located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains region has suffered tremendous ecological damages over time due to population pressure, excessive demand and inappropriate use of agricultural land resources. In this paper, datasets of land use between 1990 and 2000 were obtained from Landsat TM imagery, and then spatial models were used to characterize landscape conditions. Also, the relationship between the population density and land use/cover change (LUCC) was analyzed. Results indicate that cropland, forestland, and urban areas have increased by 44,186ha, 9001ha and 1550ha, respectively while the grassland area has appreciably decreased by 54,025ha in the study period. The decrease in grassland was most notable. Of the grassland lost, 49.4% was converted into cropland. The largest annual land conversion rate in the study area was less than 2%. These changes are attributed to industrial and agricultural development and population growth. To improve the eco-economic conditions in the study region, population control, urbanization and development of an ecological friendly agriculture were suggested.
基金National Science Fund for Distinguished Young Scholars, 40025105 National Natural Science Foundation of China, No. 40331012+3 种基金 NSF Project, No.EAR 0402509 No.BCS 00-78557 Doctoral Fund from Southwest University, No. 104220-20710904 CSTC, No.2009BB7112
文摘Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation dominated landscape then was replaced by a coniferous forest under a generally wet climate (12.1-11.0 ka BP). The vegetation was deteriorated into steppe landscape and further into a desert-steppe landscape between 11.0 and 9.8 ka BP. After a brief episode of a cool and wet climate (9.8-9.6 ka BP), a relatively mild and dry condition prevailed during the early Holocene (9.6-7.6 ka BP). The most favourable climate of warm and humid period occurred during mid-Holocene (7.6-4.0 ka BP) marked by forest-steppe landscape and vegetation alternatively changed between steppe and desert-steppe from -4.0 to -1.0 ka BP.