Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for...Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for erosion in this area, and puts forward a comprehensive controlling policy on the basis of the principles of ecology and practise of Chinese scientists for 40 years. In conformity with the policy, a number of technical measures for controlling soil and water loss are suggested.展开更多
De-farming slope farmland has been an effective measure in recent years for the improvement of the eco-environment and the mitigation of soil and water loss on the Loess Plateau. This paper, taking the Yangou Basin as...De-farming slope farmland has been an effective measure in recent years for the improvement of the eco-environment and the mitigation of soil and water loss on the Loess Plateau. This paper, taking the Yangou Basin as a case study and using day-by-day mete- orological data of Yah'an station in 2005, simulated and analyzed the quantitative relation between crop yield, soil and water loss and topographic condition with the aid of WIN-YIELD software. Results show that: 1) topographic gradient has important influence on crop yield. The bigger gradient is, the lower the crop yield. Yields of sorghum and corn decrease by 15.44% and 14.32% respectively at 25° in comparison to the case of 0°. In addition, yields of soya, bean and potato decrease slightly by 5.26%, 4.67% and 3.84%, respectively. The influences of topographic height and slope aspect on crop yield are slight. 2) Under the same topographic condition, different crops' runoff and soil loss show obvious disparity. Topographic gradient has important influence on soil and water loss. In general, the changing trend is that the soil and water loss aggregates with the increase of gradient, and the maximal amount occurs around 20°. The influence of topographic height is slight. Topographic aspect has a certain effect, and the fundamental characteristic is that values are higher at the aspect of south than north. 3) Topographic gradients of 5° and 15° are two important thresholds. The characteristic about soil and water loss with the variation of topographic gradients show that: the slope farmland with gradient less than 5° could remain unchanged, and the slope farmland more than 15° should be de-farmed as early as possible.展开更多
The three methods of slash disposal in this experiment were no treatment, strip piling and burning. The results obtained from this study showed that the soil erosion, water and nutrient loss were higher in the logged ...The three methods of slash disposal in this experiment were no treatment, strip piling and burning. The results obtained from this study showed that the soil erosion, water and nutrient loss were higher in the logged areas by burning than in the logged areas by no treatment and strip piling. The soil and water loss was not serious when the slope degree of the logged area was less than 16o. The survival rate of planted seedlings was higher and the growth was better in the logged areas followed by burning than in the logged areas by no treatment and strip piling. Burning should not be used when the slope was more than 23o.展开更多
The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone...The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone mountain railway engineering construction in the northwestern China is studied systematically and that caused possibly by the road bed project, the road moat project, the field project, the tunnel project and the service road project in construction is probed. At the same time, the type, t...展开更多
Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore...Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.展开更多
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg...North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.展开更多
Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed foc...Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.展开更多
Soil and water loss has been the most serious eco-environmental problem in the Three Gorges Reservoir Area of Chongqing.In this paper the authors studied the spatiotemporal features of soil and water loss from 1999 to...Soil and water loss has been the most serious eco-environmental problem in the Three Gorges Reservoir Area of Chongqing.In this paper the authors studied the spatiotemporal features of soil and water loss from 1999 to 2004 based on RS and GIS techniques.The results showed that:(1) The soil and water loss area decreased from 1999 to 2004.(2) Soil and water loss mainly exists in purple soil,yellow soil,limestone soil,paddy soil and yellow brown soil distributed areas.(3) The dry slope land and sparse woodland that are intensively influenced by human activities experienced most serious soil and water loss.(4) Soil and water loss in the study area indicated an obvious vertical differentiation characteristic.(5) There is a significant correlation between soil and water loss and slope.(6) There is no obvious correlation between soil and water loss and aspect.(7) Soil and water loss mainly exists in the values of R between 300 and 340 distribution area.The very-high soil and water loss has obvious correlation with R.展开更多
Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement da...Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use typ...The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use types were divided, and the changing laws of land use types were ana- lyzed. Aftewards,according to the Table of Grading Standard of Sooil Erosion Intensity(SL190-96),as well as vegetation coverage index NDVI slope, the risks of soil and water loss were assessed. Meanwhile, the level, scale, location and scope of changes in the risks of soil and water loss were monitored by using spatial visualization and spatial statistical techniques. The results showed that the area of areas without soil erosion and moderate soil erosion areas decreased obviously from 2015 to 2017, and the decreases were up to 22.929 3 and 13.626 3 km2 respectively. The ar-ea of mild soil erosion areas increased fast, and the increase reached 31.140 0 km2. The area of extremely strong soil erosion areas increased by 7.267 4 km2. In the city, moderate and strong soil erosion areas reduced, while extremely strong soil erosion patches increased fast, which was mainly related to road construction and construction and development of orchards. The extremely strong soil erosion areas were distributed in the shape of a banded loop, surrounded the suburbs of the city, and shrank towards the center of Ruijin City. The constructed technology to monitor the changes in land use and soil and water loss, as well as the changing laws of land use and soil and water loss provide the theoretical basis and plan-ning basis of soil and water conservation for urban planning departments and soil and water conservation departments.展开更多
Water and soil conservation is an important part of eco-civilization con-struction. It is a major part of eco-construction and lifeline of social and economy development. Therefore, water and soil conservation is of g...Water and soil conservation is an important part of eco-civilization con-struction. It is a major part of eco-construction and lifeline of social and economy development. Therefore, water and soil conservation is of great significance in maintaining eco-safety. The research concluded status quo and characters of water and soil losses in China and analyzed water and soil conservation and construction of eco-civilization from the perspectives of water and soil conservation and con-struction of eco-civilization.展开更多
In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecologi...In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile.展开更多
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge...Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.展开更多
Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environm...Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked.展开更多
Making a brief analysis of the water and soil loss present situation in Daxing'anling area which locates to the upstream region of Nenjiang River, and giving the water and soil loss of this area that have been made n...Making a brief analysis of the water and soil loss present situation in Daxing'anling area which locates to the upstream region of Nenjiang River, and giving the water and soil loss of this area that have been made near 20 years, as well as the factors of the water and soil loss. According to the factors corresponding prevention measure and forecast model have been put forward, make a brief introduction to this model in this article. It is helpful to improve the local soil conservation and sustainable development.展开更多
Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or l...Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.展开更多
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove...The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.展开更多
The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to d...The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to direct threats to national food security and regional sustainable development. Therefore, it is necessary to summarize integrated prevention and control experience of small watersheds in black soil region of Northeast China. Tongshuang small watershed, a typical watershed in rolling hills of typical black soil areas in Northeast China, is selected as the study area. Based on nearly 50 years' experience in prevention and control of soil and water loss, the structures and overall benefits of an integrated prevention and control system for soil and water loss are investigated. Then, the 'three defense lines' tri-dimensional protection system with reasonable allocation of different types of soil and water control measures from the hill top to gully is systematically analyzed. The first line on the top hill can weaken and block uphill runoff and sediment, hold water resources and improve soil property. The second line on the hill can truncate slope length, slow down the runoff velocity and reduce erosion energy. The third line in the gully is mainly composed of waterfall engineering, which can inhibit soil erosion and restore land resources. The 'three defense lines' system is feasible for soil and water loss control of small watersheds in the typical black soil region of Northeast China. Through the application of the in Tongshuang small watershed, There are effective improvements in ecological conditions in Tongshuang small watershed after the application of 'three defense lines' soil and water control system. Moreover, the integrated treatment paradigm for soil and water loss in typical black soil region is compared with that in loess region. The results of this study could offer references and experiences for other small watersheds in typical black soil region of Northeast China.展开更多
To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located i...To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located in the Central Southern Alps(Northern Italy).These two models,Revised Universal Soil Loss Equation(RUSLE) and Erosion Potential Model(EPM),were implemented in a Geographical Information System,accounting for the geographical,geomorphological,and weather-climate parameters,which are fundamental to evaluating the intensity and variability of the erosive processes.Soil characterization was supported by laboratory analysis.The results(computed soil loss of 87 t/ha/year and 11.1 m^(3)/ha/year,using RUSLE equation and EPM method,respectively,and sediment yield of 7.5 m^(3)/ha/year using EPM method) were compared to other studies reported in the literature for different case studies with similar topographic and climatic features,as well as to those provided by the European Soil Data Centre(ESDAC).In both cases,the agreement was satisfactory,showing consistency of the adopted procedures to the parametrization of the physical processes.展开更多
文摘Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for erosion in this area, and puts forward a comprehensive controlling policy on the basis of the principles of ecology and practise of Chinese scientists for 40 years. In conformity with the policy, a number of technical measures for controlling soil and water loss are suggested.
基金Knowledge Innovation Project of the Chinese Academy of Sciences,No.KZCX2-XB2-05-01National Natural Science Foundation of China,No.40771086
文摘De-farming slope farmland has been an effective measure in recent years for the improvement of the eco-environment and the mitigation of soil and water loss on the Loess Plateau. This paper, taking the Yangou Basin as a case study and using day-by-day mete- orological data of Yah'an station in 2005, simulated and analyzed the quantitative relation between crop yield, soil and water loss and topographic condition with the aid of WIN-YIELD software. Results show that: 1) topographic gradient has important influence on crop yield. The bigger gradient is, the lower the crop yield. Yields of sorghum and corn decrease by 15.44% and 14.32% respectively at 25° in comparison to the case of 0°. In addition, yields of soya, bean and potato decrease slightly by 5.26%, 4.67% and 3.84%, respectively. The influences of topographic height and slope aspect on crop yield are slight. 2) Under the same topographic condition, different crops' runoff and soil loss show obvious disparity. Topographic gradient has important influence on soil and water loss. In general, the changing trend is that the soil and water loss aggregates with the increase of gradient, and the maximal amount occurs around 20°. The influence of topographic height is slight. Topographic aspect has a certain effect, and the fundamental characteristic is that values are higher at the aspect of south than north. 3) Topographic gradients of 5° and 15° are two important thresholds. The characteristic about soil and water loss with the variation of topographic gradients show that: the slope farmland with gradient less than 5° could remain unchanged, and the slope farmland more than 15° should be de-farmed as early as possible.
基金Chinese Academy of Science and National Natural Science Foundation of China!(No. 39770609).
文摘The three methods of slash disposal in this experiment were no treatment, strip piling and burning. The results obtained from this study showed that the soil erosion, water and nutrient loss were higher in the logged areas by burning than in the logged areas by no treatment and strip piling. The soil and water loss was not serious when the slope degree of the logged area was less than 16o. The survival rate of planted seedlings was higher and the growth was better in the logged areas followed by burning than in the logged areas by no treatment and strip piling. Burning should not be used when the slope was more than 23o.
文摘The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone mountain railway engineering construction in the northwestern China is studied systematically and that caused possibly by the road bed project, the road moat project, the field project, the tunnel project and the service road project in construction is probed. At the same time, the type, t...
基金Supported by the National Basic Research Program of China(2007CB407204)~~
文摘Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.
文摘North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems.
文摘Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.
基金National Natural Science Foundation of China,No.40801077Science & Technology Research Project Supported by Chongqing Municipal Education Commission,No.KJ070811+1 种基金Doctoral Fund of Chongqing Normal University,No.06XLB004Project by Chongqing Water Conservancy Bureau
文摘Soil and water loss has been the most serious eco-environmental problem in the Three Gorges Reservoir Area of Chongqing.In this paper the authors studied the spatiotemporal features of soil and water loss from 1999 to 2004 based on RS and GIS techniques.The results showed that:(1) The soil and water loss area decreased from 1999 to 2004.(2) Soil and water loss mainly exists in purple soil,yellow soil,limestone soil,paddy soil and yellow brown soil distributed areas.(3) The dry slope land and sparse woodland that are intensively influenced by human activities experienced most serious soil and water loss.(4) Soil and water loss in the study area indicated an obvious vertical differentiation characteristic.(5) There is a significant correlation between soil and water loss and slope.(6) There is no obvious correlation between soil and water loss and aspect.(7) Soil and water loss mainly exists in the values of R between 300 and 340 distribution area.The very-high soil and water loss has obvious correlation with R.
文摘Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
基金Supported by Scientific Research Foundation of Wuhan Institute of Technology(16QD24)
文摘The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use types were divided, and the changing laws of land use types were ana- lyzed. Aftewards,according to the Table of Grading Standard of Sooil Erosion Intensity(SL190-96),as well as vegetation coverage index NDVI slope, the risks of soil and water loss were assessed. Meanwhile, the level, scale, location and scope of changes in the risks of soil and water loss were monitored by using spatial visualization and spatial statistical techniques. The results showed that the area of areas without soil erosion and moderate soil erosion areas decreased obviously from 2015 to 2017, and the decreases were up to 22.929 3 and 13.626 3 km2 respectively. The ar-ea of mild soil erosion areas increased fast, and the increase reached 31.140 0 km2. The area of extremely strong soil erosion areas increased by 7.267 4 km2. In the city, moderate and strong soil erosion areas reduced, while extremely strong soil erosion patches increased fast, which was mainly related to road construction and construction and development of orchards. The extremely strong soil erosion areas were distributed in the shape of a banded loop, surrounded the suburbs of the city, and shrank towards the center of Ruijin City. The constructed technology to monitor the changes in land use and soil and water loss, as well as the changing laws of land use and soil and water loss provide the theoretical basis and plan-ning basis of soil and water conservation for urban planning departments and soil and water conservation departments.
基金Supported by the Twelfth Five-year-plan in National Science and Technology for the Rural Development in China(2011BAD31B01)~~
文摘Water and soil conservation is an important part of eco-civilization con-struction. It is a major part of eco-construction and lifeline of social and economy development. Therefore, water and soil conservation is of great significance in maintaining eco-safety. The research concluded status quo and characters of water and soil losses in China and analyzed water and soil conservation and construction of eco-civilization from the perspectives of water and soil conservation and con-struction of eco-civilization.
基金Supported by National Natural Science Foundation of China(40871013)National Support Scheme Program(2006BAC01A11)~~
文摘In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile.
基金funded by the Key Program of National Natural Science Foundation of China (41630643)the National Key Research and Development Program of China (2017YFC1501302)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1701)
文摘Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.
基金the National Natural Science Foundation of China(31000944 and 41171231)the International Atomic Energy Agency,Vienna(18176 and 17908)+1 种基金the State Level Public Welfare Institute Basic Scientific Research Project of China(BSRF201407)the National Key Technologies R&D Program of China during the 12th Five-year Plan period(2013BAD11B03)for financial supports
文摘Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked.
基金Supportde by The Natual Science Fund of Heilongjiang Province(E0335)
文摘Making a brief analysis of the water and soil loss present situation in Daxing'anling area which locates to the upstream region of Nenjiang River, and giving the water and soil loss of this area that have been made near 20 years, as well as the factors of the water and soil loss. According to the factors corresponding prevention measure and forecast model have been put forward, make a brief introduction to this model in this article. It is helpful to improve the local soil conservation and sustainable development.
基金funded by the Indian Council of Agricultural Research(ICAR),New Delhi
文摘Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.
文摘The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1.
基金Supported by the National Natural Science Foundation of China,Science Foundation for Youths ( 41001165,40901133,30901163)
文摘The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to direct threats to national food security and regional sustainable development. Therefore, it is necessary to summarize integrated prevention and control experience of small watersheds in black soil region of Northeast China. Tongshuang small watershed, a typical watershed in rolling hills of typical black soil areas in Northeast China, is selected as the study area. Based on nearly 50 years' experience in prevention and control of soil and water loss, the structures and overall benefits of an integrated prevention and control system for soil and water loss are investigated. Then, the 'three defense lines' tri-dimensional protection system with reasonable allocation of different types of soil and water control measures from the hill top to gully is systematically analyzed. The first line on the top hill can weaken and block uphill runoff and sediment, hold water resources and improve soil property. The second line on the hill can truncate slope length, slow down the runoff velocity and reduce erosion energy. The third line in the gully is mainly composed of waterfall engineering, which can inhibit soil erosion and restore land resources. The 'three defense lines' system is feasible for soil and water loss control of small watersheds in the typical black soil region of Northeast China. Through the application of the in Tongshuang small watershed, There are effective improvements in ecological conditions in Tongshuang small watershed after the application of 'three defense lines' soil and water control system. Moreover, the integrated treatment paradigm for soil and water loss in typical black soil region is compared with that in loess region. The results of this study could offer references and experiences for other small watersheds in typical black soil region of Northeast China.
基金supported by MC s.r.l.,by the university research project (University of Brescia) Health and Wealth 2015“URBAID (Rigenerazione urbana assistita e integrata)”by the call H2020-SwafS-2016-17 Science with and for Society (European project:“SciShops”: Enhancing the Responsible and Sustainable Expansion of the Science Shops Ecosystem in Europe)。
文摘To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located in the Central Southern Alps(Northern Italy).These two models,Revised Universal Soil Loss Equation(RUSLE) and Erosion Potential Model(EPM),were implemented in a Geographical Information System,accounting for the geographical,geomorphological,and weather-climate parameters,which are fundamental to evaluating the intensity and variability of the erosive processes.Soil characterization was supported by laboratory analysis.The results(computed soil loss of 87 t/ha/year and 11.1 m^(3)/ha/year,using RUSLE equation and EPM method,respectively,and sediment yield of 7.5 m^(3)/ha/year using EPM method) were compared to other studies reported in the literature for different case studies with similar topographic and climatic features,as well as to those provided by the European Soil Data Centre(ESDAC).In both cases,the agreement was satisfactory,showing consistency of the adopted procedures to the parametrization of the physical processes.