Using the Three Rivers Headwaters Area in China as a pilot project, this study has investigated the effectiveness of the ecological compensation policies and practices have implemented in this area over the past decad...Using the Three Rivers Headwaters Area in China as a pilot project, this study has investigated the effectiveness of the ecological compensation policies and practices have implemented in this area over the past decade. Major issues have encountered during the implementation process, including the formidable extent of grassland degradation, the comprehensive nature of measures needed to restore the ecosystem, and the time needed to achieve these goals. These issues are discussed, and remedial measures proposed. They include: drafting regulations giving the Three Rivers Headwaters Area ecological protection, setting aside funds for ecological compensation and establishing a national park, using an ecological assets accounting methodology for financial reporting purposes, designing a science-based approach for conducting the livestock husbandry population migration, enhancing the oversight capacity for all aspects of the ecological compensation process, and making an overall plan to promote the harmonious development of this area together with other regions in Qinghai Province.展开更多
We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR(National Centers for Environmental Predictio...We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR(National Centers for Environmental Prediction/National Center for Atmospheric Research) re-analysis data and variations in the stable hydrogen and oxygen isotope ratios(δ D and δ 18O) of precipitation,spring,river,and melt water. The similar seasonality in precipitation δ 18O at different sites reveals the same moisture origin for water entering the headwaters of the Heihe River basin. The similarity in the seasonality of δ 18O and d-excess for precipitation at Yeniugou and Urumchi,which showed more positive δ 18O and lower d-excess values in summer and more negative δ 18O and higher d-excess values in winter,indicates a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter. Higher d-excess values throughout the year for Yeniugou suggest that in arid inland areas of northwestern China,water is intensively recycled. Temporal changes in δ 18O,δ D,and d-excess reveal distinct contributions of different bodies of water to surface runoff. For example,there were similar trends for δ D,δ 18O,and d-excess of precipitation and river water from June to September,similar δ 18O trends for river and spring water from December to February,and similar trends for precipitation and runoff volumes. However,there were significant differences in δ 18O between melt water and river water in September. Our results show that the recharge of surface runoff by precipitation occurred mainly from June to mid-September,whereas the supply of surface runoff in winter was from base flow(as spring water) ,mostly with a lower runoff amount.展开更多
To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than...To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than 0.01 km^2 during 1986-2019 using Google Earth Engine(GEE)platform.The surface areas of water bodies in the HAYR were processed using mass remote sensing images consisting of Landsat TM/ETM-H/OLI,Sentinel-2A,and MODIS based on automatic extraction of water indices under GEE.Besides,the lake ice phenology of the Sister Lakes(the Gyaring Lake and the Ngoring Lake)was derived by threshold segmenting of water/ice area ratio.Results demonstrate that the change of surface areas experienced four stages:decreasing during 1986-2004,increasing during 2004-2012,decreasing again during 2012-2017,and increasing again during 2017-2019.Correspondingly,the number of small lakes decreased(-26.5 per year),increased(139.5 per year),again decreased(-109.0 per year),and again increased(433.0 per year).Eight lakes larger than 1 km^2 disappeared in 2004 but restored afterward.The overall trends in the area of small lakes(0.01-1 km^2),large lakes(>1 km^2),and all lakes during 1986-2019 were 0.4,3.1,and 3.4 km^2 per year,respectively.Although the onsets of freezing,freeze-up,breaking and the break-up of the Sister Lakes varied from year to year,there is no obvious trend regarding the lake ice phenology.Tendencies of lake variations in the HAYR are primarily related to the increased net precipitation and the declined aridity,followed by the construction of hydropower station around the outlet of the Ngoring Lake,as well as permafrost degradation.展开更多
基金supported by the Natural Science Foundation of China (Grant No. 41301632Key Consulting Foundation of the Chinese Academy of Engineering (Grant No.2012-XZl 13)
文摘Using the Three Rivers Headwaters Area in China as a pilot project, this study has investigated the effectiveness of the ecological compensation policies and practices have implemented in this area over the past decade. Major issues have encountered during the implementation process, including the formidable extent of grassland degradation, the comprehensive nature of measures needed to restore the ecosystem, and the time needed to achieve these goals. These issues are discussed, and remedial measures proposed. They include: drafting regulations giving the Three Rivers Headwaters Area ecological protection, setting aside funds for ecological compensation and establishing a national park, using an ecological assets accounting methodology for financial reporting purposes, designing a science-based approach for conducting the livestock husbandry population migration, enhancing the oversight capacity for all aspects of the ecological compensation process, and making an overall plan to promote the harmonious development of this area together with other regions in Qinghai Province.
基金supported by the National Natural Science Foundation of China (91025016)the West Light Foundation of Western Doctors of the Chinese Academy of Sciences,the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the China Postdoctoral Science Foundation (200801244 and 20070420135)
文摘We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR(National Centers for Environmental Prediction/National Center for Atmospheric Research) re-analysis data and variations in the stable hydrogen and oxygen isotope ratios(δ D and δ 18O) of precipitation,spring,river,and melt water. The similar seasonality in precipitation δ 18O at different sites reveals the same moisture origin for water entering the headwaters of the Heihe River basin. The similarity in the seasonality of δ 18O and d-excess for precipitation at Yeniugou and Urumchi,which showed more positive δ 18O and lower d-excess values in summer and more negative δ 18O and higher d-excess values in winter,indicates a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter. Higher d-excess values throughout the year for Yeniugou suggest that in arid inland areas of northwestern China,water is intensively recycled. Temporal changes in δ 18O,δ D,and d-excess reveal distinct contributions of different bodies of water to surface runoff. For example,there were similar trends for δ D,δ 18O,and d-excess of precipitation and river water from June to September,similar δ 18O trends for river and spring water from December to February,and similar trends for precipitation and runoff volumes. However,there were significant differences in δ 18O between melt water and river water in September. Our results show that the recharge of surface runoff by precipitation occurred mainly from June to mid-September,whereas the supply of surface runoff in winter was from base flow(as spring water) ,mostly with a lower runoff amount.
基金National Key Research and Development Program of China(2017YFC0405701)the National Natural Science Foundation(NSF)of China(41671060).
文摘To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than 0.01 km^2 during 1986-2019 using Google Earth Engine(GEE)platform.The surface areas of water bodies in the HAYR were processed using mass remote sensing images consisting of Landsat TM/ETM-H/OLI,Sentinel-2A,and MODIS based on automatic extraction of water indices under GEE.Besides,the lake ice phenology of the Sister Lakes(the Gyaring Lake and the Ngoring Lake)was derived by threshold segmenting of water/ice area ratio.Results demonstrate that the change of surface areas experienced four stages:decreasing during 1986-2004,increasing during 2004-2012,decreasing again during 2012-2017,and increasing again during 2017-2019.Correspondingly,the number of small lakes decreased(-26.5 per year),increased(139.5 per year),again decreased(-109.0 per year),and again increased(433.0 per year).Eight lakes larger than 1 km^2 disappeared in 2004 but restored afterward.The overall trends in the area of small lakes(0.01-1 km^2),large lakes(>1 km^2),and all lakes during 1986-2019 were 0.4,3.1,and 3.4 km^2 per year,respectively.Although the onsets of freezing,freeze-up,breaking and the break-up of the Sister Lakes varied from year to year,there is no obvious trend regarding the lake ice phenology.Tendencies of lake variations in the HAYR are primarily related to the increased net precipitation and the declined aridity,followed by the construction of hydropower station around the outlet of the Ngoring Lake,as well as permafrost degradation.