The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into...The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the waUs of the swid chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this prob- lem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units.展开更多
基金the project No.2010-218-02-174 by the Governmental Order of the Russian Federation of April 9,2010 No.218'On measures of federal support of cooperation between higher educational institutions and enterprises which realize complex projects of hi-tech production development
文摘The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the waUs of the swid chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this prob- lem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units.