In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel co...In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company.This study utilizes numerical simulation method,establishes themathematicalmodels of flow,combustion andNOX generation combustion process in the furnace and analyzes the heat transfer process and NOX generation in the furnace under different air oxygen content and different wind ratio.The research results show that with the increase of oxygen content in the air,the combustion temperature in the furnace rises significantly,and the emission concentration of NOX increases.Furthermore,the NOX emission concentration is related to the proportion of primary and secondary air.展开更多
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c...A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical hea...Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.展开更多
Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace ...Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace affect the safe and smooth production of natural gas directly. At gas collecting stations now, no measures of anticorrosion have been adopted in heating furnaces which erode and scale badly. In order to solve the corrosive problem of heating-furnaces, prolong operating life of heating-furnaces, assure safe and smooth production of natural gas, the mechanism and influencing factors of corrosion of the heating-furnace were analyzed and some corresponding measures were brought forward based on a field investigation of usage behavior and present operational status of heating-furnaces at the first gas production factory. The results show that the corrosive ion and soluble CO2 and O2 in water erode metal badly at the condition of being heated. Corrosion of a heating-furnace are mostly oxygen corrosion, corrosive ion corrosion, acid corrosion, iron encrustation corrosion, dry and wet interface corrosion, caustic corrosion, etc; The influencing factors of corrosion mainly include soluble O2 and CO2 in water, pH value, heat loading, corrosive ion, soluble solid (salinity) and non-flowing character of water, etc.展开更多
The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In ...The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.展开更多
The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7...The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water.展开更多
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en...The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.展开更多
This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction beha...This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction behavior of a slab in various sections of the heating furnace is analyzed using the Laplace transformation method, including the pre-heating zone, the first heating zone, the second heating zone, and the soaking zone. The heating pattern of the furnace is then modified to reduce fuel consumption. The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed, and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.展开更多
The recent rapid developments in the automobile industry have demanded the extensive use of gaivannealed (GA) steel sheets.In particular,the development of lightweight automobiles is putting increasingly higher requ...The recent rapid developments in the automobile industry have demanded the extensive use of gaivannealed (GA) steel sheets.In particular,the development of lightweight automobiles is putting increasingly higher requirements on the strength of GA steel sheets.The galvanneal furnace,which is used for processing galvannealed steel sheets,is typically composed of the induction heating section,holding section and fog cooling section.This paper described the structural characteristics of each component of the galvanneal furnace,and analyzed temperature control methods of the galvanneal furnace that are important for the successful production of high-strength GA steel sheets for automotive applications.展开更多
For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mat...For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a com...Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity, pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found. In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.展开更多
Self-fluxing iron ore concentrates containing coal have good microwave Absorbability. With the voluminal heating property of microwave, the concentrates can be reduced uniformly and swiftly. The metallized semi-produc...Self-fluxing iron ore concentrates containing coal have good microwave Absorbability. With the voluminal heating property of microwave, the concentrates can be reduced uniformly and swiftly. The metallized semi-product can be directly charged into electric furnace for making clean steel. The total consumed energy of overall route is about 20 98 GJ.展开更多
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio...A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.展开更多
The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an ...The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an example, several waste heat recovery systems in the annealing furnaces are compared and their advantages and disadvantages are analyzed through different energy-saving technologies.展开更多
Results of analytically studied effect of electromagnetic blowing and the slag height on the arc efficiency are stated. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force, ...Results of analytically studied effect of electromagnetic blowing and the slag height on the arc efficiency are stated. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force, arc radiation on the wall and roof increase and effective output, absorbed by the metal decreases. EAF (electric arc steel melting furnace) with independently powered arcs, eliminating its electromagnetic blowing is proposed. When arcs are powered independently, its efficiency increases significantly, and specific energy consumption decreases.展开更多
The flow and heat transfer of the basalt melt in the boundary layer on a flat plate is considered. The conditions of formation of the layer and the intensity of heat transfer are determined. A self-similar analysis us...The flow and heat transfer of the basalt melt in the boundary layer on a flat plate is considered. The conditions of formation of the layer and the intensity of heat transfer are determined. A self-similar analysis using the symmetry method was used. A system of ordinary differential equations in self-similar form is obtained. The fluid flow and heat transfer of molten basalt at a laminar steady-state flow in the feeder furnaces are numerically researched. The term “protective layer” on the interface “basalt melt-lining” is introduced. The dependences for the calculation of dimensionless shear stresses and the Nusselt number on the lining surface are obtained. The conditions of rational organization of the technological process of basalt melt feeding in the furnace feeder are formulated.展开更多
The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfe...The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfer in electric arc and flare metallurgical furnaces, furnaces of steam boilers, and combustion chambers of gas turbine plants of power plants have been developed. The use of scientific discovery makes it possible to create innovative electric arc steel-smelting furnaces, flare heating furnaces, and combustion chambers in which the consumption of electricity and fuel is reduced, productivity and service life are increased, and the amount of harmful emissions into the environment is reduced.展开更多
To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size...To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag.The temperature field and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions,and the effects of operating conditions such as slag trench inclination,high-temperature slag inlet flow rate,and inlet temperature are investigated.The results show that the flow rate of high-temperature slag is related to the slope of the slag trench,the greater the slope of the slag trench,the higher the flow rate of high-temperature slag,in which the highest average speed can reach 2.23 m/s when the slope is 8%;changing the inlet flow rate,flowing through the slag trench,the high-temperature slag reaches the highest flow rate at the same position,the overall flow rate changes tend to rise first and then decrease,and the greater the inlet flow rate,the higher the temperature change of high-temperature slag.The higher the inlet flow rate,the higher the temperature change of high-temperature slag,the higher the temperature of high-temperature slag out of the slag trench;the higher the inlet temperature,the higher the overall flow rate of high-temperature slag,and the position of the highest flow rate is relatively backward.展开更多
基金Supported by the National Natural Science Foundation of China(52330003).
文摘In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company.This study utilizes numerical simulation method,establishes themathematicalmodels of flow,combustion andNOX generation combustion process in the furnace and analyzes the heat transfer process and NOX generation in the furnace under different air oxygen content and different wind ratio.The research results show that with the increase of oxygen content in the air,the combustion temperature in the furnace rises significantly,and the emission concentration of NOX increases.Furthermore,the NOX emission concentration is related to the proportion of primary and secondary air.
文摘A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
文摘Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.
文摘Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace affect the safe and smooth production of natural gas directly. At gas collecting stations now, no measures of anticorrosion have been adopted in heating furnaces which erode and scale badly. In order to solve the corrosive problem of heating-furnaces, prolong operating life of heating-furnaces, assure safe and smooth production of natural gas, the mechanism and influencing factors of corrosion of the heating-furnace were analyzed and some corresponding measures were brought forward based on a field investigation of usage behavior and present operational status of heating-furnaces at the first gas production factory. The results show that the corrosive ion and soluble CO2 and O2 in water erode metal badly at the condition of being heated. Corrosion of a heating-furnace are mostly oxygen corrosion, corrosive ion corrosion, acid corrosion, iron encrustation corrosion, dry and wet interface corrosion, caustic corrosion, etc; The influencing factors of corrosion mainly include soluble O2 and CO2 in water, pH value, heat loading, corrosive ion, soluble solid (salinity) and non-flowing character of water, etc.
基金financially supported by the National Natural Science Foundation of China (No. 61271303)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-12-029A)
文摘The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.
文摘The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water.
基金financially supported by the National Key R&D Program of China (No.2018YFC1900500)the National Natural Science Foundation of China (No.51961020)+1 种基金the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No.2018IB020)the Academician Workstation of Kefa Cen (No.2018IC085)。
文摘The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.
文摘This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction behavior of a slab in various sections of the heating furnace is analyzed using the Laplace transformation method, including the pre-heating zone, the first heating zone, the second heating zone, and the soaking zone. The heating pattern of the furnace is then modified to reduce fuel consumption. The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed, and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.
文摘The recent rapid developments in the automobile industry have demanded the extensive use of gaivannealed (GA) steel sheets.In particular,the development of lightweight automobiles is putting increasingly higher requirements on the strength of GA steel sheets.The galvanneal furnace,which is used for processing galvannealed steel sheets,is typically composed of the induction heating section,holding section and fog cooling section.This paper described the structural characteristics of each component of the galvanneal furnace,and analyzed temperature control methods of the galvanneal furnace that are important for the successful production of high-strength GA steel sheets for automotive applications.
文摘For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.
文摘Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity, pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found. In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.
文摘Self-fluxing iron ore concentrates containing coal have good microwave Absorbability. With the voluminal heating property of microwave, the concentrates can be reduced uniformly and swiftly. The metallized semi-product can be directly charged into electric furnace for making clean steel. The total consumed energy of overall route is about 20 98 GJ.
文摘A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.
文摘The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an example, several waste heat recovery systems in the annealing furnaces are compared and their advantages and disadvantages are analyzed through different energy-saving technologies.
文摘Results of analytically studied effect of electromagnetic blowing and the slag height on the arc efficiency are stated. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force, arc radiation on the wall and roof increase and effective output, absorbed by the metal decreases. EAF (electric arc steel melting furnace) with independently powered arcs, eliminating its electromagnetic blowing is proposed. When arcs are powered independently, its efficiency increases significantly, and specific energy consumption decreases.
文摘The flow and heat transfer of the basalt melt in the boundary layer on a flat plate is considered. The conditions of formation of the layer and the intensity of heat transfer are determined. A self-similar analysis using the symmetry method was used. A system of ordinary differential equations in self-similar form is obtained. The fluid flow and heat transfer of molten basalt at a laminar steady-state flow in the feeder furnaces are numerically researched. The term “protective layer” on the interface “basalt melt-lining” is introduced. The dependences for the calculation of dimensionless shear stresses and the Nusselt number on the lining surface are obtained. The conditions of rational organization of the technological process of basalt melt feeding in the furnace feeder are formulated.
文摘The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfer in electric arc and flare metallurgical furnaces, furnaces of steam boilers, and combustion chambers of gas turbine plants of power plants have been developed. The use of scientific discovery makes it possible to create innovative electric arc steel-smelting furnaces, flare heating furnaces, and combustion chambers in which the consumption of electricity and fuel is reduced, productivity and service life are increased, and the amount of harmful emissions into the environment is reduced.
文摘To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag.The temperature field and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions,and the effects of operating conditions such as slag trench inclination,high-temperature slag inlet flow rate,and inlet temperature are investigated.The results show that the flow rate of high-temperature slag is related to the slope of the slag trench,the greater the slope of the slag trench,the higher the flow rate of high-temperature slag,in which the highest average speed can reach 2.23 m/s when the slope is 8%;changing the inlet flow rate,flowing through the slag trench,the high-temperature slag reaches the highest flow rate at the same position,the overall flow rate changes tend to rise first and then decrease,and the greater the inlet flow rate,the higher the temperature change of high-temperature slag.The higher the inlet flow rate,the higher the temperature change of high-temperature slag,the higher the temperature of high-temperature slag out of the slag trench;the higher the inlet temperature,the higher the overall flow rate of high-temperature slag,and the position of the highest flow rate is relatively backward.