期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于HARP框架的农业知识图谱表示模型研究
1
作者 陈彩铭 冯建中 +3 位作者 白林燕 王剑 谢能付 邹军 《农业图书情报学报》 2023年第8期66-77,共12页
[目的/意义]随着农业知识图谱数据规模的增长,图谱的节点和关系复杂度不断提升,这对其训练和表示提出了新的挑战。在此背景下,探索如何在保全知识图谱结构的同时降低资源消耗并加快嵌入速度具有重要的研究和应用意义。[方法/过程]针对... [目的/意义]随着农业知识图谱数据规模的增长,图谱的节点和关系复杂度不断提升,这对其训练和表示提出了新的挑战。在此背景下,探索如何在保全知识图谱结构的同时降低资源消耗并加快嵌入速度具有重要的研究和应用意义。[方法/过程]针对这一问题,本研究提出了一种基于HARP框架的农业知识图谱层次表示模型。该模型利用农业知识图谱的层次性特征,采用一种改进的基于关系路径随机行走策略,有效地保留了图谱中节点的层次性和非对称关系结构。[结果/结论]1)与HARP框架相比,使用LEIDEN的HRWP模型能更好地保留空间结构,并快速收敛了速度;2)采用HRWP的融合模型训练时间基本小于二者训练时间总和,且对原算法时间复杂度影响较小;3)结合HRWP的传统算法各指标平均提高2%,非神经网络模型有显著提升。综上,认为模型可以准确表示农业知识图谱并有效缩短训练时间。 展开更多
关键词 知识图谱 随机游走 表示学习 HARP框架
下载PDF
A hierarchical path-segmentation movement ecology framework
2
作者 Wayne M.Getz 《Ecological Processes》 SCIE EI 2022年第1期787-801,共15页
This paper lays out a hierarchical,appropriate-complexity framework for conceptualizing movement-path segments at different spatiotemporal scales in a way that facilitates comparative analyses and bridges behavior and... This paper lays out a hierarchical,appropriate-complexity framework for conceptualizing movement-path segments at different spatiotemporal scales in a way that facilitates comparative analyses and bridges behavior and mathematical concepts.It then outlines a process for generating a multimode,multiscale stochastic simulation model that can be used to test animal movement hypotheses and make predictions of movement responses to management and global change.Many methods for analyzing movement data begin by generating step-length(SL)and turning-angle(TA)distributions from relocation time-series data,some of which are linked to ecological,landscape,and environmental covariates.The frequency at which these data are collected may vary from sub-seconds to several hours.The kinds of questions that may be asked of these data,however,are very much scale dependent.The hierarchical path-segmentation(HPS)framework presented here clarifies how the scale at which SL and TA data are collected relates to other sub-and super-diel scales.Difficulties arise because the information contained in SL and TA time series are often not directly relatable to the physiological,ecological,and sociological factors that drive the structure of movement paths at longer scales.These difficulties are overcome by anchoring the classification of movement types around the concept of fixed-period(24 h)diel activity routines and providing a bridge between behavioral/ecological and stochastic-walk concepts(means,variances,correlations,individual-state and local environmental covariates).This bridge is achieved through the generation of relatively short segments conceived as characteristic sequences of fundamental movement elements.These short segments are then used to characterize longer canonical-activity-mode segments that emerge through movement at behaviorally relevant sub-diel scales.HPS thus provides a novel system for integrating sub-minute movement sequences into canonical activity modes(CAMs)that,in turn,can be strung together into various types of diel activity routines(DARs).These DARs both vary among individuals within a given day,and for any given individual across time and under the influence of landscape factors.An understanding of how DARs are influenced by environmental inputs will help us predict the response of supra-diel lifetime movement phases(LiMPs)of individuals,as well as their complete lifetime tracks(LiTs),to anthropogenically induced global change. 展开更多
关键词 hierarchical path segmentation(HPS) Fundamental movement elements(FuMEs) Canonical activity modes(CAMs) Diel activity routines(DARs) Life-history movement phases(LiMPS) Multi-CAM metaFuME Markov(M-cubed)models Biased correlated random walk models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部