Gerber Technology, a business unit of Gerber Scientific, Inc. (NYSE:GRB) and a world leader in automated CAD/CAM and PLM solutions for the apparel and flexible materials industry, today unveiled its new PLM
Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known ac...Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 tran- scripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are ex- pressed at the low levels in early rice stamen, through the ChlP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reac- tions and the expression levels of most of them are increased when expression of OsMADS58 is downre- gulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.展开更多
The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regu- late the initiation of flowering in these two distantly related plant species. These genes are necessary also for ...The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regu- late the initiation of flowering in these two distantly related plant species. These genes are necessary also for the expression of downstream genes that control floral organ identity. We used Arabidopsis LFY cDNA as a probe to clone and sequence a papaya ortholog of LFY, PFL. It encodes a protein that shares 61% identity with the Arabidopsis LFY gene and 71% identity with the LFY homologs of the two woody tree species: California sycamore (Platanus racemosa) and black cottonwood (Populus trichocarpa). Despite the high sequence similarity within two conserved regions, the N-terminal proline-rich motif in papaya PFL differs from other members in the family. This difference may not affect the gene function of papaya PFL, since an equally divergent but a functional LFY ortholog NEEDLY of Pinus radiata has been reported. Genomic and BAC Southern analyses indicated that there is only one copy of PFL in the papaya genome. In situ hybridization experiments demonstrated that PFL is expressed at a relatively low level in leaf primordia, but it is expressed at a high level in the floral meristem. Quantitative PCR analyses revealed that PFL was expressed in flower buds of all three sex types - male, female, and hermaphrodite with marginal difference between hermaphrodite and unisexual flowers. These data suggest that PFL may play a similar role as LFY in flower development and has limited effect on sex differentiation in papaya.展开更多
Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a chal...Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a challenge, and inspired by the recent success of deep identity network (DeepID-Net) for face identification, this paper proposes a novel deep learning based framework for recognising human expressions with facial images. Compared to the existing deep learning methods, our proposed framework, which is based on multi-scale global images and local facial patches, can significantly achieve a better performance on facial expression recognition. Finally, we verify the effectiveness of our proposed framework through experiments on the public benchmarking datasets JAFFE and extended Cohn-Kanade (CK+).展开更多
文摘Gerber Technology, a business unit of Gerber Scientific, Inc. (NYSE:GRB) and a world leader in automated CAD/CAM and PLM solutions for the apparel and flexible materials industry, today unveiled its new PLM
文摘Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 tran- scripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are ex- pressed at the low levels in early rice stamen, through the ChlP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reac- tions and the expression levels of most of them are increased when expression of OsMADS58 is downre- gulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.
文摘The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regu- late the initiation of flowering in these two distantly related plant species. These genes are necessary also for the expression of downstream genes that control floral organ identity. We used Arabidopsis LFY cDNA as a probe to clone and sequence a papaya ortholog of LFY, PFL. It encodes a protein that shares 61% identity with the Arabidopsis LFY gene and 71% identity with the LFY homologs of the two woody tree species: California sycamore (Platanus racemosa) and black cottonwood (Populus trichocarpa). Despite the high sequence similarity within two conserved regions, the N-terminal proline-rich motif in papaya PFL differs from other members in the family. This difference may not affect the gene function of papaya PFL, since an equally divergent but a functional LFY ortholog NEEDLY of Pinus radiata has been reported. Genomic and BAC Southern analyses indicated that there is only one copy of PFL in the papaya genome. In situ hybridization experiments demonstrated that PFL is expressed at a relatively low level in leaf primordia, but it is expressed at a high level in the floral meristem. Quantitative PCR analyses revealed that PFL was expressed in flower buds of all three sex types - male, female, and hermaphrodite with marginal difference between hermaphrodite and unisexual flowers. These data suggest that PFL may play a similar role as LFY in flower development and has limited effect on sex differentiation in papaya.
基金supported by the Academy of Finland(267581)the D2I SHOK Project from Digile Oy as well as Nokia Technologies(Tampere,Finland)
文摘Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a challenge, and inspired by the recent success of deep identity network (DeepID-Net) for face identification, this paper proposes a novel deep learning based framework for recognising human expressions with facial images. Compared to the existing deep learning methods, our proposed framework, which is based on multi-scale global images and local facial patches, can significantly achieve a better performance on facial expression recognition. Finally, we verify the effectiveness of our proposed framework through experiments on the public benchmarking datasets JAFFE and extended Cohn-Kanade (CK+).